CRC Handbook of Chemistry and Physics, 96th Edition
William M. HaynesProudly serving the scientific community for over a century, this 96th edition of the CRC Handbook of Chemistry and Physics is an update of a classic reference, mirroring the growth and direction of science. This venerable work continues to be the most accessed and respected scientific reference in the world. An authoritative resource consisting of tables of data and current international recommendations on nomenclature, symbols, and units, its usefulness spans not only the physical sciences but also related areas of biology, geology, and environmental science.
The 96th edition of the Handbook includes 18 new or updated tables along with other updates and expansions. A new series highlighting the achievements of some of the major historical figures in chemistry and physics was initiated with the 94th edition. This series is continued with this edition, which is focused on Lord Kelvin, Michael Faraday, John Dalton, and Robert Boyle. This series, which provides biographical information, a list of major achievements, and notable quotations attributed to each of the renowned chemists and physicists, will be continued in succeeding editions. Each edition will feature two chemists and two physicists.
The 96th edition now includes a complimentary eBook with purchase of the print version. This reference puts physical property data and mathematical formulas used in labs and classrooms every day within easy reach.
New Tables:
Section 1: Basic Constants, Units, and Conversion Factors
- Descriptive Terms for Solubility
Section 8: Analytical Chemistry
- Stationary Phases for Porous Layer Open Tubular Columns
- Coolants for Cryotrapping
- Instability of HPLC Solvents
- Chlorine-Bromine Combination Isotope Intensities
Section 16: Health and Safety Information
- Materials Compatible with and Resistant to 72 Percent Perchloric Acid
- Relative Dose Ranges from Ionizing Radiation
Updated and Expanded Tables
Section 6: Fluid Properties
- Sublimation Pressure of Solids
- Vapor Pressure of Fluids at Temperatures Below 300 K
Section 7: Biochemistry
- Structure and Functions of Some Common Drugs
Section 9: Molecular Structure and Spectroscopy
- Bond Dissociation Energies
Section 11: Nuclear and Particle Physics
- Summary Tables of Particle Properties
- Table of the Isotopes
Section 14: Geophysics, Astronomy, and Acoustics
- Major World Earthquakes
- Atmospheric Concentration of Carbon Dioxide, 1958-2014
- Global Temperature Trend, 1880-2014
Section 15: Practical Laboratory Data
- Dependence of Boiling Point on Pressure
Section 16: Health and Safety Information
- Threshold Limits for Airborne Contaminants
Please note: you need to verify every book you want to send to your Kindle. Check your mailbox for the verification email from Amazon Kindle.
You may be interested in Powered by Rec2Me
Most frequently terms
Related Booklists
|
|
27 Gauge & Higgs Boson Summary Table SUMMARY TABLES OF PARTICLE PROPERTIES Extracted from the Particle Listings of the Review of Particle Physics W J=1 Charge = ± 1 e Mass m = 80.385 ± 0.015 GeV m Z − m W = 10.4 ± 1.6 GeV m W + − m W − = − 0.2 ± 0.6 GeV Full = 2.085 ± 0.042 GeV ® width N = 15 . 70 ± 0.35 ± π ® NK®± = 2.20 ± 0.19 Np = 0®.92 ± 0.14 N harged = 19.39 ± 0.08 K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) Available at http://pdg.lbl.gov Particle Data Group K.A. Olive, K. Agashe, C. Amsler, M. Antonelli, J.-F. Arguin, D.M. Asner, H. Baer, H.R. Band, R.M. Barnett, T. Basaglia, C.W. Bauer, J.J. Beatty, V.I. Belousov, J. Beringer, G. Bernardi, S. Bethke, H. Bichsel, O. Biebel, E. Blucher, S. Blusk, G. Brooijmans, O. Buchmueller, V. Burkert, M.A. Bychkov, R.N. Cahn, M. Carena, A. Ceccucci, A. Cerri, D. Chakraborty, M.-C. Chen, R.S. Chivukula, K. Copic, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong, G. Dissertori, B.A. Dobrescu, M. Doser, M. Drees, H.K. Dreiner, D.A. Edwards, S. Eidelman, J. Erler, V.V. Ezhela, W. Fetscher, B.D. Fields, B. Foster, A. Freitas, T.K. Gaisser, H. Gallagher, L. Garren, H.-J. Gerber, G. Gerbier, T. Gershon, T. Gherghetta, S. Golwala, M. Goodman, C. Grab, A.V. Gritsan, C. Grojean, D.E. Groom, M. Grünewald, A. Gurtu, T. Gutsche, H.E. Haber, K. Hagiwara, C. Hanhart, S. Hashimoto, Y. Hayato, K.G. Hayes, M. Heffner, B. Heltsley, J.J. Hernández-Rey, K. Hikasa, A. Höcker, J. Holder, A. Holtkamp, J. Huston, J.D. Jackson, K.F. Johnson, T. Junk, M. Kado, D. Karlen, U.F. Katz, S.R. Klein, E. Klempt, R.V. Kowalewski, F. Krauss, M. Kreps, B. Krusche, Yu.V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, P. Langacker, A. Liddle, Z. Ligeti, C.-J. Lin, T.M. Liss, L. Littenberg, K.S. Lugovsky, S.B. Lugovsky, F. Maltoni, T. Mannel, A.V. Manohar, W.J. Marciano, A.D. Martin, A. Masoni, J. Matthews, D. Milstead, P. Molaro, K. Mönig, F. Moortgat, M.J. Mortonson, H. Murayama, K. Nakamura, M. Narain, P. Nason, S.; Navas, M. Neubert, P. Nevski, Y. Nir, L. Pape, J. Parsons, C. Patrignani, J.A. Peacock, M. Pennington, S.T. Petcov, A. Piepke, A. Pomarol, A. Quadt, S. Raby, J. Rademacker, G. Raffelt, B.N. Ratcliff, P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk, L.J. Rosenberg, J.L. Rosner, G. Rybka, C.T. Sachrajda, Y. Sakai, G.P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott, V. Sharma, S.R. Sharpe, M. Silari, T. Sjöstrand, P. Skands, J.G. Smith, G.F. Smoot, S. Spanier, H. Spieler, C. Spiering, A. Stahl, T. Stanev, S.L. Stone, T. Sumiyoshi, M.J. Syphers, F. Takahashi, M. Tanabashi, J. Terning, L. Tiator, M. Titov, N.P. Tkachenko, N.A. Törnqvist, D. Tovey, G. Valencia, G. Venanzoni, M.G. Vincter, P. Vogel, A. Vogt, S.P. Wakely, W. Walkowiak, C.W. Walter, D.R. Ward, G. Weiglein, D.H. Weinberg, E.J. Weinberg, M. White, L.R. Wiencke, C.G. Wohl, L. Wolfenstein, J. Womersley, C.L. Woody, R.L. Workman, A. Yamamoto, W.-M. Yao, G.P. Zeller, O.V. Zenin, J. Zhang, R.-Y. Zhu, F. Zimmermann, P.A. Zyla Technical Associates: G. Harper, V.S. Lugovsky, P. Schaffner c °2014 Regents of the University of California (Approximate closing date for data: January 15, 2014) GAUGE AND HIGGS BOSONS I (J PC ) = 0,1(1 − − ) γ Mass m < 1 × 10−18 eV Charge q < 1 × 10−35 e Mean life τ = Stable g I (J P ) = 0(1− ) or gluon Mass m = 0 [a℄ SU(3) olor o tet J=2 graviton Mass m < 6 × 10−32 eV W − modes are harge onjugates of the modes below. W + DECAY MODES ℓ+ ν [b ℄ e+ ν µ+ ν τ+ ν hadrons π+ γ D+ s γ X s invisible Z Fra tion ( i / ) (10.86 ± 0.09) % (10.71 ± 0.16) % (10.63 ± 0.15) % (11.38 ± 0.21) % (67.41 ± 0.27) % < 7 × 10−5 < 1.3 × 10−3 (33.3 ± 2.6 ) % +13 ) % (31 − 11 [ ℄ ( 1. 4 ± 2. 9 ) % J=1 Charge = 0 Mass m = 91.1876 ± 0.0021 GeV [d ℄ Full = 2.4952 ± 0.0023 GeV ¡ +width ¢ ℓ ℓ− = 83.984 ± 0.086 MeV [b℄ ¡ ¢ invisible = 499.0 ± 1.5 MeV [e ℄ ¡ ¢ = ¡hadrons ¡ 1744.¢4 ± 2.0 MeV ¢ µ+ µ− / e + e − = 1.0009 ± 0.0028 ¡ + −¢ ¡ + −¢ = 1.0019 ± 0.0032 [f ℄ τ τ / e e Average harged multipli ity ® N harged = 20.76 ± 0.16 (S = 2.1) Couplings to quarks and leptons g ℓV = − 0.03783 ± 0.00041 07 g uV = 0.25 −+ 00..06 05 g dV = − 0.33 +− 00..06 ℓ g A = − 0.50123 ± 0.00026 04 g uA = 0.50 +− 00..06 050 g dA = − 0.523 −+ 00..029 ν ℓ g = 0.5008 ± 0.0008 g νe = 0.53 ± 0.09 g νµ = 0.502 ± 0.017 Asymmetry parameters [g ℄ Ae = 0.1515 ± 0.0019 Aµ = 0.142 ± 0.015 Aτ = 0.143 ± 0.004 As = 0.90 ± 0.09 A = 0.670 ± 0.027 Ab = 0.923 ± 0.020 Charge asymmetry (%) at Z pole (0ℓ) AFB = 1.71 ± 0.10 (0u ) AFB = 4 ± 7 s) A(0 FB = 9.8 ± 1.1 (0 ) AFB = 7.07 ± 0.35 b) A(0 FB = 9.92 ± 0.16 p Con den e level (MeV/ ) { 40192 40192 40173 95% 95% { 40192 40168 { { { 28 Gauge & Higgs Boson Summary Table Z DECAY MODES e+ e− µ+ µ− τ+ τ− ℓ+ ℓ− [b ℄ ℓ+ ℓ− ℓ+ ℓ− [h ℄ invisible hadrons ( uu + )/2 ( dd + ss + bb )/3 bb bbbb ggg π0 γ ηγ ωγ η ′ (958) γ γγ γγγ π± W ∓ ρ± W ∓ [i ℄ [i ℄ J /ψ(1S )X ψ (2S )X χ 1 (1P )X χ 2 (1P )X (1S ) X + (2S ) X + (3S ) X (1S )X (2S )X (3S )X (D 0 / D 0 ) X D± X D ∗ (2010)± X Ds 1 (2536)± X DsJ (2573)± X D ∗′ (2629)± X B+ X B 0s X B+ X + X 0 X b X b -baryon X H 0 3.363 ± 0.004 ) % 3.366 ± 0.007 ) % 3.370 ± 0.008 ) % 3.3658 ± 0.0023) % .9 ( 4.2 +0 ) × 10−6 − 0. 8 (20.00 ± 0.06 ) % (69.91 ± 0.06 ) % (11.6 ± 0.6 ) % (15.6 ± 0.4 ) % (12.03 ± 0.21 ) % (15.12 ± 0.05 ) % ( 3.6 ± 1.3 ) × 10−4 < 1.1 % < 5.2 × 10−5 < 5.1 × 10−5 < 6.5 × 10−4 < 4.2 × 10−5 < 5.2 × 10−5 < 1. 0 × 10−5 < 7 × 10−5 < 8.3 × 10−5 ( 1.60 ( 2.9 < 3.2 ( 1.0 { 45594 { { { { { { { { 45594 45592 45590 45589 45594 45594 10162 10136 +0.23 ) × 10−3 S=1.1 − 0.25 ± 0.29 ) × 10−3 ± 0.7 ) × 10−3 × 10−3 CL=90% ± 0. 5 ) × 10−4 { { { { { × 10−5 CL=95% × 10−4 CL=95% { { { { { { { { { { { { { { { { { < 1.39 < 9. 4 LF LF LF L,B L,B 45594 45594 45559 CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% CL=95% < 4. 4 e+ e− γ pe pµ ( ( ( ( ( 3.51 anomalous γ + hadrons µ+ µ− γ τ+ τ− γ ℓ+ ℓ− γ γ qqγγ ννγγ e ± µ∓ e± τ ∓ µ± τ ∓ S ale fa tor/ p Con den e level (MeV/ ) Fra tion ( i / ) (20.7 ± 2.0 (12.2 ± 1.7 [i ℄ (11.4 ± 1.3 ( 3.6 ± 0.8 ( 5.8 ± 2.2 sear hed for [j ℄ ( 6.08 ± 0.13 [j ℄ ( 1.59 ± 0.13 sear hed for ( 1.54 ± 0.33 seen seen [j ℄ ( 1.38 ± 0.22 [k ℄ < 3.2 [k ℄ < 5.2 [k ℄ < 5.6 [k ℄ < 7.3 [l ℄ < 6.8 [l ℄ < 5 . 5 [l ℄ < 3 . 1 [i ℄ < 1.7 [i ℄ < 9.8 [i ℄ < 1.2 < 1.8 < 1.8 × 10−5 CL=95% )% )% )% ) × 10−3 ) × 10−3 )% )% )% )% × 10−3 CL=95% × 10−4 CL=95% × 10−4 CL=95% × 10−4 CL=95% × 10−6 CL=95% × 10−6 CL=95% × 10−6 CL=95% × 10−6 CL=95% × 10−6 CL=95% × 10−5 CL=95% × 10−6 CL=95% × 10−6 CL=95% J=0 Mass m = 125.7 ± 0.4 GeV H 0 Signal Strengths in Di erent Channels Combined Final States = 1.17 ± 0.17 (S = 1.2) 0.24 W W ∗ = 0.87 + − 0.22 .34 + 0 ∗ Z Z = 1.11 − 0.28 (S = 1.3) 0.27 γ γ = 1.58 + − 0.23 b b = 1.1 ± 0.5 τ + τ − = 0.4 ± 0.6 Z γ < 9.5, CL = 95% 45594 45594 45559 { { 45594 45594 45576 45576 45589 45589 Neutral Higgs Bosons, Sear hes for Sear hes for a Higgs Boson with Standard Model Couplings Mass m > 122 and none 128{710 GeV, CL = 95% The limits for H 01 and A0 in supersymmetri models refer to the mmax h ben hmark s enario for the supersymmetri parameters. H 01 in Supersymmetri Models (m H 0 <m H 0 ) 2 1 Mass m > 92.8 GeV, CL = 95% A0 Pseudos alar Higgs Boson in Supersymmetri Models [n℄ Mass m > 93.4 GeV, CL = 95% tanβ >0.4 H Charged Higgs Bosons ( ± and H± H ±± ), Sear hes for Mass m > 80 GeV, CL = 95% New Heavy Bosons ( ′ , ′ , leptoquarks, et .), Sear hes for W Z Additional W Bosons W ′ with standard ouplings Mass m > 2.900 × 103 GeV, CL = 95% (p p dire t sear h) WR (Right-handed W Boson) Mass m > 715 GeV, CL = 90% (ele troweak t) Additional Z Bosons ′ Z SM with standard ouplings Mass m > 2.590 × 103 GeV, CL = 95% (p p dire t sear h) Mass m > 1.500 × 103 GeV, CL = 95% (ele troweak t) ZLR of SU(2)L ×SU(2)R ×U(1) (with gL = gR ) Mass m > 630 GeV, CL = 95% (p p dire t sear h) Mass m > 1162 GeV, CL = 95% (ele troweak t) Zχ of SO(10) → SU(5)×U(1)χ (with gχ =e / osθW ) Mass m > 1.970 × 103 GeV, CL = 95% (p p dire t sear h) Mass m > 1.141 × 103 GeV, CL = 95% (ele troweak t) Zψ of E6 → SO(10)×U(1)ψ (with gψ =e / osθW ) Mass m > 2.260 × 103 GeV, CL = 95% (p p dire t sear h) Mass m > 476 GeV, CL = 95% (ele troweak t) Zη of E6 → SU(3)×SU(2)×U(1)×U(1)η (with gη =e / osθW ) Mass m > 1.870 × 103 GeV, CL = 95% (p p dire t sear h) Mass m > 619 GeV, CL = 95% (ele troweak t) S alar Leptoquarks Mass m > 830 GeV, CL = 95% (1st generation, pair prod.) Mass m > 304 GeV, CL = 95% (1st gener., single prod.) Mass m > 840 GeV, CL = 95% (2nd gener., pair prod.) Mass m > 73 GeV, CL = 95% (2nd gener., single prod.) Mass m > 525 GeV, CL = 95% (3rd gener., pair prod.) (See the Parti le Listings for assumptions on leptoquark quantum numbers and bran hing fra tions.) Diquarks Mass m > 3.750 × 103 GeV, CL = 95% Axigluon Mass m > 3.360 × 103 GeV, CL = 95% A Axions ( 0 ) and Other Very Light Bosons, Sear hes for The standard Pe ei-Quinn axion is ruled out. Variants with redu ed ouplings or mu h smaller masses are onstrained by various data. The Parti le Listings in the full Review ontain a Note dis ussing axion sear hes. The best limit for the half-life of neutrinoless double beta de ay with Majoron emission is > 7.2 × 1024 years (CL = 90%). 29 Gauge & Higgs Boson Summary Table NOTES In this Summary Table: When a quantity has \(S = . . .)" to its right, the errorpon the quantity has been enlarged by the \s ale fa tor" S, de ned as S = χ2 /(N − 1), where N is the number of measurements used in al ulating the quantity. We do this when S > 1, whi h often indi ates that the measurements are in onsistent. When S > 1.25, we also show in the Parti le Listings an ideogram of the measurements. For more about S, see the Introdu tion. A de ay momentum p is given for ea h de ay mode. For a 2-body de ay, p is the momentum of ea h de ay produ t in the rest frame of the de aying parti le. For a 3-or-more-body de ay, p is the largest momentum any of the produ ts an have in this frame. [a℄ Theoreti al value. A mass as large as a few MeV may not be pre luded. [b ℄ ℓ indi ates ea h type of lepton (e , µ, and τ ), not sum over them. [ ℄ This represents the width for the de ay of the W boson into a harged parti le with momentum below dete tability, p< 200 MeV. [d ℄ The Z -boson mass listed here orresponds to a Breit-Wigner resonan e parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z -boson propagator. [e ℄ This partial width takes into a ount Z de ays into ν ν and any other possible undete ted modes. [f ℄ This ratio has not been orre ted for the τ mass. [g ℄ Here A ≡ 2gV gA /(g2V +g2A ). [h℄ Here ℓ indi ates e or µ. [i ℄ The value is for the sum of the harge states or parti le/antiparti le states indi ated. [j ℄ This value is updated using the produ t of (i) the Z → b b fra tion from this listing and (ii) the b -hadron fra tion in an unbiased sample of weakly de aying b -hadrons produ ed in Z de ays provided by the Heavy Flavor Averaging Group (HFAG, http://www.sla .stanford.edu/xorg/hfag/os /PDG 2009/#FRACZ). [k ℄ See the Z Parti le Listings for the γ energy range used in this measurement. [l ℄ For m γ γ = (60 ± 5) GeV. [n℄ The limits assume no invisible de ays. 30 Lepton Summary Table LEPTONS De ay parameters J = 21 e Mass m = (548.57990946 ± 0.00000022) × 10−6 u ± 0.000000011 MeV ¯ ¯Mass m = 0.510998928 ¯m + − m − ¯/m < 8 × 10−9 , CL = 90% e ¯± ¯ e ¯q + + q − ¯ e < 4 × 10−8 e e Magneti moment anomaly (g−2)/2 = (1159.65218076 ± 0.00000027) × 10−6 (g e + − g e − ) / gaverage = (− 0.5 ± 2.1) × 10−12 Ele tri dipole moment d < 10.5 × 10−28 e m, CL = 90% Mean life τ > 4.6 × 1026 yr, CL = 90% [a℄ J = 21 µ Mass m = 0.1134289267 ± 0.0000000029 u Mass m = 105.6583715 ± 0.0000035 MeV Mean life τ = (2.1969811 ± 0.0000022) × 10−6 s τ µ+ /τ µ− = 1.00002 ± 0.00008 τ = 658.6384 m Magneti moment anomaly (g−2)/2 = (11659209 ± 6) × 10−10 (g µ+ − g µ− ) / g average = (− 0.11 ± 0.12) × 10−8 Ele tri dipole moment d = (− 0.1 ± 0.9) × 10−19 e m De ay parameters [b℄ ρ = 0.74979 ± 0.00026 η = 0.057 ± 0.034 δ = 0.75047 ± 0.00034 + 0.0016 [ ℄ ξ Pµ = 1.0009 − 0.0007 + 0.0016 [ ℄ ξ Pµ δ /ρ = 1.0018 − 0.0007 ξ ′ = 1.00 ± 0.04 ξ ′′ = 0.7 ± 0.4 α/A = (0 ± 4) × 10−3 α′ /A = (− 10 ± 20) × 10−3 β /A = (4 ± 6) × 10−3 β ′ /A = (2 ± 7) × 10−3 η = 0.02 ± 0.08 µ+ modes are harge onjugates of the modes below. µ− DECAY MODES e − ν e νµ e − ν e νµ γ e − ν e νµ e + e − e − νe ν µ e− γ e− e+ e− e − 2γ τ Fra tion ( i / ) p Con den e level (MeV/ ) ≈ 100% [d ℄ [e ℄ 53 53 53 (1.4 ± 0.4) % (3.4 ± 0.4) × 10−5 Lepton Family number (LF ) violating modes LF [f ℄ < 1.2 % LF < 5.7 × 10−13 LF < 1.0 × 10−12 LF < 7.2 × 10−11 90% 90% 90% 90% J = 21 Mass m = 1776.82 ± 0.16 MeV (m τ + − m τ − )/maverage < 2.8 × 10−4 , CL = 90% Mean life τ = (290.3 ± 0.5) × 10−15 s τ = 87.03 µm Magneti moment anomaly > − 0.052 and < 0.013, CL = 95% Re(d τ ) = − 0.220 to 0.45 × 10−16 e m, CL = 95% Im(d τ ) = − 0.250 to 0.0080 × 10−16 e m, CL = 95% Weak dipole moment Re(d τw ) < 0.50 × 10−17 e m, CL = 95% Im(d τw ) < 1.1 × 10−17 e m, CL = 95% Weak anomalous magneti dipole moment −3 Re(αw τ ) < 1.1 × 10 , CL = 95% −3 , CL = 95% ) < 2 . 7 × 10 Im(αw τ τ ± → π ± K 0S ντ (RATE DIFFERENCE) / (RATE SUM) = (− 0.36 ± 0.25)% 53 53 53 53 See the τ Parti le Listings for a note on erning τ -de ay parameters. ρ(e or µ) = 0.745 ± 0.008 ρ(e ) = 0.747 ± 0.010 ρ(µ) = 0.763 ± 0.020 ξ (e or µ) = 0.985 ± 0.030 ξ (e ) = 0.994 ± 0.040 ξ (µ) = 1.030 ± 0.059 η (e or µ) = 0.013 ± 0.020 η (µ) = 0.094 ± 0.073 (δξ )(e or µ) = 0.746 ± 0.021 (δξ )(e ) = 0.734 ± 0.028 (δξ )(µ) = 0.778 ± 0.037 ξ (π ) = 0.993 ± 0.022 ξ (ρ) = 0.994 ± 0.008 ξ (a1 ) = 1.001 ± 0.027 ξ (all hadroni modes) = 0.995 ± 0.007 τ + modes are harge onjugates of the modes below. \h ± " stands for π ± or K ± . \ℓ" stands for e or µ. \Neutrals" stands for γ 's and/or π0 's. τ − DECAY MODES S ale fa tor/ p Con den e level (MeV/ ) Fra tion ( i / ) Modes with one harged parti le S=1.3 (85.35 ± 0.07 ) % parti le− ≥ 0 neutrals ≥ 0K 0 ντ (\1-prong") 0 − parti le ≥ 0 neutrals ≥ 0K L ντ (84.71 ± 0.08 ) % S=1.3 µ− ν µ ντ [g ℄ (17.41 ± 0.04 ) % S=1.1 µ− ν µ ντ γ [e ℄ ( 3.6 ± 0.4 ) × 10−3 e − ν e ντ [g ℄ (17.83 ± 0.04 ) % [e ℄ ( 1.75 ± 0.18 ) % e − ν e ντ γ h− ≥ 0K 0L ντ (12.06 ± 0.06 ) % S=1.2 (11.53 ± 0.06 ) % S=1.2 h− ντ π − ντ [g ℄ (10.83 ± 0.06 ) % S=1.2 [g ℄ ( 7.00 ± 0.10 ) × 10−3 S=1.1 K − ντ h− ≥ 1 neutrals ντ (37.10 ± 0.10 ) % S=1.2 (36.58 ± 0.10 ) % S=1.2 h− ≥ 1π 0 ντ (ex.K 0 ) h− π0 ντ (25.95 ± 0.09 ) % S=1.1 π − π 0 ντ [g ℄ (25.52 ± 0.09 ) % S=1.1 π − π 0 non-ρ(770) ντ ( 3.0 ± 3.2 ) × 10−3 [g ℄ ( 4.29 ± 0.15 ) × 10−3 K − π0 ντ h− ≥ 2π 0 ντ (10.87 ± 0.11 ) % S=1.2 ( 9.52 ± 0.11 ) % S=1.1 h− 2π0 ντ ( 9.36 ± 0.11 ) % S=1.2 h− 2π0 ντ (ex.K 0 ) π − 2π 0 ντ (ex.K 0 ) [g ℄ ( 9.30 ± 0.11 ) % S=1.2 π − 2π 0 ντ (ex.K 0 ), < 9 × 10−3 CL=95% s alar π − 2π 0 ντ (ex.K 0 ), < 7 × 10−3 CL=95% ve tor [g ℄ ( 6.5 ± 2.3 ) × 10−4 K − 2π0 ντ (ex.K 0 ) h− ≥ 3π 0 ντ ( 1.35 ± 0.07 ) % S=1.1 ( 1.26 ± 0.07 ) % S=1.1 h− ≥ 3π 0 ντ (ex. K 0 ) − 0 h 3π ντ ( 1.19 ± 0.07 ) % π − 3π 0 ντ (ex.K 0 ) [g ℄ ( 1.05 ± 0.07 ) % [g ℄ ( 4.8 ± 2.2 ) × 10−4 K − 3π0 ντ (ex.K 0 , η) h− 4π0 ντ (ex.K 0 ) ( 1.6 ± 0.4 ) × 10−3 h− 4π0 ντ (ex.K 0 ,η ) [g ℄ ( 1.1 ± 0.4 ) × 10−3 ( 1.572 ± 0.033) % S=1.1 K − ≥ 0π 0 ≥ 0K 0 ≥ 0γ ντ K − ≥ 1 (π 0 or K 0 or γ ) ντ S=1.1 ( 8.72 ± 0.32 ) × 10−3 K 0S (parti les)− ντ h− K 0 ντ π − K 0 ντ π− K 0 (non-K ∗ (892)− ) ντ K − K 0 ντ K − K 0 ≥ 0π 0 ντ h− K 0 π0 ντ π − K 0 π 0 ντ K 0 ρ− ντ K − K 0 π0 ντ π − K 0 ≥ 1π 0 ντ Modes with K 0 's [g ℄ [g ℄ [g ℄ [g ℄ ) × 10−3 ( ( ( ( 9.2 1.00 8.4 5.4 ± 0. 4 ( ( ( ( ( ( ( 1.59 3.18 5.6 4.0 2.2 1.59 3.2 ± 0.16 ) × 10−3 ± 0.23 ) × 10−3 ± 0.4 ) × 10−3 ± 0.05 ) % ± 0.4 ± 2. 1 ) × 10−3 ) × 10−4 ) × 10−3 ) × 10−3 ± 0.20 ) × 10−3 ± 1.0 ) × 10−3 ± 0.4 ± 0. 5 S=1.5 S=1.8 S=2.1 { { 885 885 888 888 883 883 883 820 { { 878 878 878 814 { 862 862 862 862 862 796 { { 836 836 765 800 800 820 { { 812 812 812 737 737 794 794 612 685 { 31 Lepton Summary Table π − K 0 π 0 π 0 ντ K − K 0 π0 π0 ντ π − K 0 K 0 ντ π − K 0S K 0S ντ π − K 0S K 0L ντ π − K 0 K 0 π 0 ντ π − K 0S K 0S π 0 ντ π − K 0S K 0L π 0 ντ K − K 0S K 0S ντ K − K 0S K 0S π0 ντ K 0 h+ h− h− ≥ 0 neutrals K 0 h+ h− h− ντ ( 2.6 1.6 ( 1.7 [g ℄ ( 2.31 [g ℄ ( 1 . 2 ( 3.1 ( 1.60 ( 3.1 < 6.3 < 4.0 < 1.7 ( 2.3 < ντ 2 4 ) × 10−4 × 10−4 ± 0.4 ) × 10−3 ± 0.17 ) × 10−4 ± 0.4 ) × 10−3 ± 2.3 ) × 10−4 ± 0.30 ) × 10−4 ± 1.2 ) × 10−4 × 10−7 × 10−7 × 10−3 ± 2.0 ) × 10−4 ± . Modes with three harged parti les h− h− h+ ≥ 0 neutrals ≥ 0K 0L ντ h− h− h+ ≥ 0 neutrals ντ (ex. K 0S → π+ π− ) (\3-prong") h− h− h+ ντ h− h− h+ ντ (ex.K 0 ) h− h− h+ ντ (ex.K 0 ,ω) π − π + π − ντ π − π + π − ντ (ex.K 0 ) π − π + π − ντ (ex.K 0 ), non-axial ve tor π − π + π − ντ (ex.K 0 ,ω ) h− h− h+ ≥ 1 neutrals ντ h− h− h+ ≥ 1 π0 ντ (ex. K 0 ) h− h− h+ π0 ντ h− h− h+ π0 ντ (ex.K 0 ) h− h− h+ π0 ντ (ex. K 0 , ω) π − π + π − π 0 ντ π − π + π − π 0 ντ (ex.K 0 ) π − π + π − π 0 ντ (ex.K 0 ,ω ) h− h− h+ ≥ 2π0 ντ (ex. K 0) h− h− h+ 2π0 ντ h− h− h+ 2π0 ντ (ex.K 0 ) h− h− h+ 2π0 ντ (ex.K 0 ,ω,η) h− h− h+ 3π0 ντ 2π− π+ 3π0 ντ (ex.K 0 ) 2π− π+ 3π0 ντ (ex.K 0 , η , f1 (1285)) 2π− π+ 3π0 ντ (ex.K 0 , η , ω , f1 (1285)) K − h+ h− ≥ 0 neutrals ντ K − h+ π− ντ (ex.K 0 ) K − h+ π− π0 ντ (ex.K 0 ) K − π+ π− ≥ 0 neutrals ντ K − π+ π− ≥ 0π0 ντ (ex.K 0 ) K − π+ π− ντ K − π+ π− ντ (ex.K 0 ) K − ρ0 ντ → K − π+ π− ντ K − π+ π− π0 ντ K − π+ π− π0 ντ (ex.K 0 ) K − π+ π− π0 ντ (ex.K 0 ,η) K − π+ π− π0 ντ (ex.K 0 ,ω) K − π+ K − ≥ 0 neut. ντ K − K + π− ≥ 0 neut. ντ K − K + π− ντ K − K + π− π0 ντ K − K + K − ντ K − K + K − ντ (ex. φ) K − K + K − π0 ντ π − K + π − ≥ 0 neut. ντ e − e − e + ν e ντ µ− e − e + ν µ ντ (15.20 ± 0.08 ) % (14.57 ± 0.07 ) % ( 9.80 ( 9.46 ( 9.42 ( 9.31 ( 9.02 < 2.4 [g ℄ ( 8.99 ( 5.39 ( 5.09 ( 4.76 ( 4.57 ( 2.79 ( 4.62 ( 4.48 [g ℄ ( 2.70 ( 5.21 ( 5.08 ( 4.98 [g ℄ ( 1 . 0 [g ℄ ( 2 . 3 ( 2.1 ( 1.7 < 5.8 ( 6.35 ( 4.38 ( 8. 7 ( 4.85 ( 3.75 ( 3.49 [g ℄ ( 2.94 ( 1.4 ( 1.35 ( 8.1 [g ℄ ( 7 . 8 ( 3.7 < 9 ( 1.50 [g ℄ ( 1.44 [g ℄ ( 6 . 1 ( 2.1 < 2.5 < 4.8 < 2.5 ( 2.8 < 3.6 0 07 ) % 0 06 ) % ± 0.06 ) % ± 0.06 ) % ± 0.06 ) % % ± . ± . 0 06 ) % 0 07 ) % ± 0.06 ) % ± 0.06 ) % ± 0.06 ) % ± 0.08 ) % ± 0.06 ) % ± 0.06 ) % ± 0.08 ) % ± 0.32 ) × 10−3 ± 0.32 ) × 10−3 ± 0.32 ) × 10−3 ± 0.4 ) × 10−3 ± 0.6 ) × 10−4 ± 0.4 ) × 10−4 ± 0.4 ) × 10−4 ± . ± . CL=95% S=1.8 S=1.9 S=1.8 CL=90% CL=90% CL=95% S=1.3 S=1.3 861 861 S=1.2 S=1.2 S=1.2 S=1.2 S=1.1 CL=95% 861 861 861 861 861 861 S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 861 S=1.2 × 10 5 CL=90% S=1.5 ± 0.24 ) × 10−3 ± 0.19 ) × 10−3 S=2.7 S=1.1 ± 1.2 ) × 10−4 S=1.4 ± 0.21 ) × 10−3 S=1.5 ± 0.19 ) × 10−3 ± 0.16 ) × 10 3 ± 0.15 ) × 10−3 ± 0.5 ) × 10−3 ± 0.14 ) × 10−3 ± 1.2 ) × 10−4 ± 1.2 ) × 10−4 ± 0.9 ) × 10−4 × 10−4 ± 0.06 ) × 10−3 ± 0.05 ) × 10−3 ± 2.5 ) × 10−5 ± 0.8 ) × 10−5 × 10−6 × 10−6 × 10−3 ± 1.5 ) × 10−5 × 10−5 Modes with ve harged parti les ( 1.02 ± 0.04 ) × 10−3 3h− 2h+ ≥ 0 neutrals ντ (ex. K 0S → π− π+ ) (\5-prong") [g ℄ ( 8.39 ± 0.35 ) × 10−4 3h− 2h+ ντ (ex.K 0 ) ( 8.3 ± 0.4 ) × 10−4 3π− 2π+ ντ (ex.K 0 , ω ) ( 7.7 ± 0.4 ) × 10−4 3π− 2π+ ντ (ex.K 0 , ω , f1 (1285)) { { 834 834 834 834 834 834 { 797 797 797 749 749 { − − 763 619 682 682 682 614 614 614 466 337 760 760 S=1.9 S=2.2 CL=95% S=1.8 S=1.9 S=1.4 S=5.4 CL=90% CL=90% CL=95% { 794 794 763 794 794 794 794 { 763 763 763 763 685 685 685 618 471 { CL=90% 345 794 888 885 S=1.1 794 S=1.1 794 794 { K − 2π− 2π+ ντ K + 3π− π+ ντ K + K − 2π− π+ ντ 3h− 2h+ π0 ντ (ex.K 0 ) 3π− 2π+ π0 ντ (ex.K 0 ) 3π− 2π+ π0 ντ (ex.K 0 , η , f1 (1285)) 3π− 2π+ π0 ντ (ex.K 0 , η , ω , f1 (1285)) K − 2π− 2π+ π0 ντ + K 3π− π+ π0 ντ 3h− 2h+ 2π0 ντ 2. 4 × 10−6 CL=90% 5. 0 × 10−6 CL=90% < 4. 5 × 10−7 CL=90% [g ℄ ( 1.78 ± 0.27 ) × 10−4 ( 1.65 ± 0.10 ) × 10−4 ( 1.11 ± 0.10 ) × 10−4 ( 3.6 ± 0.9 ) × 10−5 715 715 528 746 746 10−6 CL=90% 10−7 CL=90% × 10−6 CL=90% 657 657 687 < < < < < 1. 9 8 3. 4 × × Mis ellaneous other allowed modes ( 7.6 ± 0.5 ) × 10−3 (5π )− ντ + − < 3. 0 × 10−7 4h 3h ≥ 0 neutrals ντ (\7-prong") < 4. 3 × 10−7 4h− 3h+ ντ 4h− 3h+ π0 ντ < 2. 5 × 10−7 X − (S=− 1) ντ ( 2.87 ± 0.07 ) % ( 1.42 ± 0.18 ) % K ∗ (892)− ≥ 0 neutrals ≥ 0K 0L ντ ( 1.20 ± 0.07 ) % K ∗ (892)− ντ ( 7.9 ± 0.5 ) × 10−3 K ∗ (892)− ντ → π− K 0 ντ ( 3.2 ± 1.4 ) × 10−3 K ∗ (892)0 K − ≥ 0 neutrals ντ K ∗ (892)0 K − ντ ( 2.1 ± 0.4 ) × 10−3 K ∗ (892)0 π− ≥ 0 neutrals ντ ( 3.8 ± 1.7 ) × 10−3 K ∗ (892)0 π− ντ ( 2.2 ± 0.5 ) × 10−3 ( 1.0 ± 0.4 ) × 10−3 ( K ∗ (892) π )− ντ → π − K 0 π 0 ντ K1 (1270)− ντ K1 (1400)− ντ ( 4.7 ( 1.7 ( 1.5 K ∗ (1410)− ντ < 5 K ∗0 (1430)− ντ K ∗2 (1430)− ντ < 3 η π− ντ < 9. 9 η π− π 0 ντ [g ℄ ( 1.39 η π− π 0 π 0 ντ ( 1.81 η K − ντ [g ℄ ( 1.52 η K ∗ (892)− ντ ( 1.38 η K − π 0 ντ ( 4.8 − 0 ∗ η K π (non-K (892)) ντ < 3. 5 η K 0 π − ντ ( 9.3 η K 0 π − π 0 ντ < 5. 0 η K − K 0 ντ < 9. 0 η π+ π − π − ≥ 0 neutrals ντ < 3 + − − 0 η π π π ντ (ex.K ) ( 2.25 η π− π + π − ντ (ex.K 0 ,f1 (1285)) ( 9.9 η a1 (1260)− ντ → η π− ρ0 ντ < 3. 9 η η π− ντ < 7. 4 η η π− π 0 ντ < 2. 0 − η η K ντ < 3. 0 η ′ (958) π − ντ < 4. 0 η ′ (958) π − π 0 ντ < 1. 2 < 2. 4 η ′ (958) K − ντ φπ− ντ ( 3.4 − φ K ντ ( 3.70 ( 3.9 f1 (1285) π− ντ f1 (1285) π− ντ → ( 1.18 η π− π + π − ντ − ( 5.2 f1 (1285) π ντ → 3π− 2π+ ντ π (1300)− ντ → (ρπ )− ντ → < 1. 0 (3π )− ντ π (1300)− ντ → ((π π )S −wave π )− ντ → (3π )− ντ h− ω ≥ 0 neutrals ντ h − ω ντ K − ω ντ h− ω π0 ντ h− ω 2π0 ντ π − ω 2π 0 ντ h− 2ω ντ 2h− h+ ω ντ 2π − π + ω ν τ < 1 1 ) × 10−3 2 6 ) × 10−3 +1.4 ) × 10−3 − 1. 0 × 10−4 × 10−3 × 10−5 ± 0.10 ) × 10−3 ± 0.31 ) × 10−4 ± 0.08 ) × 10−4 ± 0.15 ) × 10−4 ± 1.2 ) × 10−5 × 10−5 ± 1.5 ) × 10−5 × 10−5 × 10−6 × 10−3 ± 0.13 ) × 10−4 ± 1.6 ) × 10−5 × 10−4 × 10−6 × 10−4 × 10−6 × 10−6 × 10−5 × 10−6 ± 0.6 ) × 10−5 ± 0.33 ) × 10−5 ± 0.5 ) × 10−4 ± 0.07 ) × 10−4 ± 0.5 ) × 10−5 ± . ± . S=1.8 665 682 612 { { 542 542 655 655 { S=1.7 CL=95% CL=95% CL=95% S=1.4 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=95% CL=90% CL=90% CL=90% CL=90% S=1.3 S=1.9 S=1.3 0 09 ) % S=1.2 0 08 ) % S=1.3 0 9 ) × 10−4 ± 0.4 ) × 10−3 ± 0.5 ) × 10−4 ± 1.7 ) × 10−5 × 10−7 CL=90% ± 0.22 ) × 10−4 ± 0.7 ) × 10−5 ± . ± . 800 682 665 10−4 CL=90% × 10−4 CL=90% ± . { CL=90% CL=90% S=1.3 S=1.4 × 1. 9 ( 2.41 [g ℄ ( 2.00 ( 4.1 [g ℄ ( 4.1 ( 1.4 ( 7.3 < 5. 4 ( 1.20 ( 8.4 CL=90% { 433 335 326 317 316 797 778 746 719 511 665 { 661 590 430 743 743 { { 637 559 382 620 591 495 585 445 408 { { { { 708 708 610 684 644 644 249 641 641 32 Lepton Summary Table Lepton Family number (LF ), Lepton number (L), or Baryon number (B) violating modes means lepton number violation ( τ − → + π− π−). Following ommon usage, means lepton family violation lepton number violation ( τ − → − π+ π− ). means baryon number violation. < 3. 3 × 10−8 CL=90% e− γ µ− γ < 4. 4 × 10−8 CL=90% e − π0 < 8.0 × 10−8 CL=90% µ− π 0 < 1.1 × 10−7 CL=90% e− K 0 < 2.6 × 10−8 CL=90% µ− K 0 < 2.3 × 10−8 CL=90% e− η < 9.2 × 10−8 CL=90% µ− η < 6.5 × 10−8 CL=90% e − ρ0 < 1.8 × 10−8 CL=90% µ− ρ0 < 1.2 × 10−8 CL=90% e− ω < 4.8 × 10−8 CL=90% µ− ω < 4.7 × 10−8 CL=90% e − K ∗ (892)0 < 3.2 × 10−8 CL=90% µ− K ∗ (892)0 < 5.9 × 10−8 CL=90% e − K ∗ (892)0 < 3.4 × 10−8 CL=90% µ− K ∗ (892)0 < 7.0 × 10−8 CL=90% e − η′ (958) < 1.6 × 10−7 CL=90% µ− η ′ (958) < 1.3 × 10−7 CL=90% e − f0 (980) → e − π+ π− < 3.2 × 10−8 CL=90% µ− f0 (980) → µ− π + π − < 3.4 × 10−8 CL=90% < 3. 1 × 10−8 CL=90% e− φ µ− φ < 8.4 × 10−8 CL=90% < 2.7 × 10−8 CL=90% e− e+ e− e − µ+ µ− < 2.7 × 10−8 CL=90% e + µ− µ− < 1.7 × 10−8 CL=90% µ− e + e − < 1.8 × 10−8 CL=90% µ+ e − e − < 1.5 × 10−8 CL=90% µ− µ+ µ− < 2.1 × 10−8 CL=90% e − π+ π− < 2.3 × 10−8 CL=90% < 2.0 × 10−8 CL=90% e + π− π− µ− π + π − < 2.1 × 10−8 CL=90% µ+ π − π − < 3.9 × 10−8 CL=90% e − π+ K − < 3.7 × 10−8 CL=90% < 3.1 × 10−8 CL=90% e − π− K + e + π− K − < 3.2 × 10−8 CL=90% < 7.1 × 10−8 CL=90% e− K 0 K 0 < 3.4 × 10−8 CL=90% e− K + K − < 3.3 × 10−8 CL=90% e+ K − K − µ− π + K − < 8.6 × 10−8 CL=90% µ− π − K + < 4.5 × 10−8 CL=90% µ+ π − K − < 4.8 × 10−8 CL=90% µ− K 0 K 0 < 8.0 × 10−8 CL=90% µ− K + K − < 4.4 × 10−8 CL=90% µ+ K − K − < 4.7 × 10−8 CL=90% < 6.5 × 10−6 CL=90% e − π0 π0 µ− π 0 π 0 < 1.4 × 10−5 CL=90% < 3.5 × 10−5 CL=90% e− η η µ− η η < 6.0 × 10−5 CL=90% < 2.4 × 10−5 CL=90% e − π0 η µ− π 0 η < 2.2 × 10−5 CL=90% , < 4.4 × 10−7 CL=90% p µ− µ− p µ+ µ− , < 3.3 × 10−7 CL=90% pγ , < 3. 5 × 10−6 CL=90% p π0 < 1.5 × 10−5 CL=90% , , p 2π0 < 3.3 × 10−5 CL=90% pη , < 8.9 × 10−6 CL=90% p π0 η , < 2.7 × 10−5 CL=90% , < 7.2 × 10−8 CL=90% π− π− , < 1.4 × 10−7 CL=90% < 2.7 × 10−3 CL=95% e − light boson µ− light boson < 5 × 10−3 CL=95% L e e.g. LF e.g. and not e B LF LF LF LF LF S LF S LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF L LF L LF LF L S S LF LF L LF LF L S S Neutrino Properties LF LF L LF LF LF LF LF LF L B L B L B L B L B L B L B L B L B LF LF 888 885 883 880 819 815 804 800 719 715 716 711 665 659 665 659 630 625 { { 596 590 888 882 882 885 885 873 877 877 866 866 813 813 813 736 738 738 800 800 800 696 699 699 878 867 699 653 798 784 618 618 641 632 604 475 360 525 525 { { See the note on \Neutrino properties listings" in the Parti le Listings. Mass m < 2 eV (tritium de ay) Mean life/mass, τ /m > 300 s/eV, CL = 90% (rea tor) Mean life/mass, τ /m > 7 × 109 s/eV (solar) Mean life/mass, τ /m > 15.4 s/eV, CL = 90% (a elerator) Magneti moment µ < 0.29 × 10−10 µ , CL = 90% (rea tor) B Number of Neutrino Types Number N = 2.984 ± 0.008 (Standard Model ts to LEP data) Number N = 2.92 ± 0.05 (S = 1.2) (Dire t measurement of invisible Z width) Neutrino Mixing The following values are obtained through data analyses based on the 3-neutrino mixing s heme des ribed in the review \Neutrino Mass, Mixing, and Os illations" by K. Nakamura and S.T. Pet ov in this Review. sin2 (2θ12) = 0.846 ± 0.021 m221 = (7.53 ± 0.18) × 10−5 eV2 .001 (normal mass hierar hy) sin2 (2θ23) = 0.999 +0 − 0.018 .000 sin2 (2θ23) = 1.000 +0 (inverted mass hierar hy) − 0.017 m232 = (2.44 ± 0.06) × 10−3 eV2 [ ℄ (normal mass hierar hy) m232 = (2.52 ± 0.07) × 10−3 eV2 [ ℄ (inverted mass hierar hy) sin2 (2θ13) = (9.3 ± 0.8) × 10−2 Stable Neutral Heavy Lepton Mass Limits Mass m > 45.0 GeV, CL = 95% (Dira ) Mass m > 39.5 GeV, CL = 95% (Majorana) Neutral Heavy Lepton Mass Limits Mass m > 90.3 GeV, CL = 95% (Dira ν oupling to e , µ, τ ; onservative ase(τ )) Mass m > 80.5 GeV, CL = 95% (Majorana ν oupling to e , µ, τ ; onservative ase(τ )) i i L L NOTES In this Summary Table: When a quantity has \(S = . . .)" to its right, the errorpon the quantity has been enlarged by the \s ale fa tor" S, de ned as S = χ2/(N − 1), where N is the number of measurements used in al ulating the quantity. We do this when S > 1, whi h often indi ates that the measurements are in onsistent. When S > 1.25, we also show in the Parti le Listings an ideogram of the measurements. For more about S, see the Introdu tion. A de ay momentum p is given for ea h de ay mode. For a 2-body de ay, p is the momentum of ea h de ay produ t in the rest frame of the de aying parti le. For a 3-or-more-body de ay, p is the largest momentum any of the produ ts an have in this frame. [a℄ This is the best limit for the24mode e − → ν γ . The best limit for \ele tron disappearan e" is 6.4 × 10 yr. [b℄ See the \Note on Muon De ay Parameters" in the µ Parti le Listings for de nitions and details. [ ℄ Pµ is the longitudinal polarization of the muon from pion de ay. In standard V −A theory, Pµ = 1 and ρ = δ = 3/4. [d ℄ This only in ludes events with the γ energy > 10 MeV. Sin e the e − ν νµ and e − ν νµ γ modes annot be learly separated, we regard the latter mode as a subset of the former. [e ℄ See the relevant Parti le Listings for the energy limits used in this measurement. [f ℄ A test of additive vs. multipli ative lepton family number onservation. [g ℄ Basis mode for the τ . [h℄ L± mass limit depends on de ay assumptions; see the Full Listings. [i ℄ The sign of m232 is not known at this time. The range quoted is for the absolute value. e e Heavy Charged Lepton Sear hes L± { harged lepton Mass m > 100.8 GeV, CL = 95% [ ℄ De ay to ν W . L± { stable harged heavy lepton Mass m > 102.6 GeV, CL = 95% h 33 Quark Summary Table QUARKS b′ (4th Generation) Quark, Sear The u -, d -, and s -quark masses are estimates of so- alled \ urrentquark masses," in a mass-independent subtra tion s heme su h as MS at a s ale µ ≈ 2 GeV. The - and b -quark masses are the \running" masses in the MS s heme. For the b -quark we also quote the 1S mass. These an be di erent from the heavy quark masses obtained in potential models. Mass m > Mass m > Mass m > Mass m > 0.7 m u = 2.3 + − 0.5 MeV Charge = 32 e m u /m d = 0.38{0.58 190 GeV, CL = 95% (p p , quasi-stable b ′ ) 400 GeV, CL = 95% (p p , neutral- urrent de ays) 675 GeV, CL = 95% (p p , harged- urrent de ays) 46.0 GeV, CL = 95% (e + e − , all de ays) t ′ (4th Generation) Quark, Sear I (J P ) = 21 ( 21 + ) u hes for hes for Mass m > 782 GeV, CL = 95% Mass m > 700 GeV, CL = 95% Iz = + 21 (p p , neutral- urrent de ays) (p p , harged- urrent de ays) Free Quark Sear hes I (J P ) = 21 ( 21 + ) d + 0.5 MeV = 4.8 − 0. 3 Charge = − 13 e All sear hes sin e 1977 have had negative results. Iz = − 12 md m s /m d = 17{22 + 0.7 MeV m = (m u +m d )/2 = 3.5 − 0.2 NOTES [a℄ A dis ussion of the de nition of the top quark mass in these measurements an be found in the review \The Top Quark." [b ℄ Based on published top mass√measurements using data from Tevatron Run-I and Run-II and LHC at s = 7 TeV. In luding the most re ent unpublished results from Tevatron Run-II, the Tevatron Ele troweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note \The Top Quark' in the Quark Parti le Listings of this Review. [ ℄ ℓ means e or µ de ay mode, not the sum over them. [d ℄ Assumes lepton universality and W -de ay a eptan e. [e ℄ This limit is for (t → γ q )/ (t → W b ). [f ℄ This limit is for (t → Z q )/ (t → W b ). I (J P ) = 0( 12 + ) s m s = 95 ± 5 MeV Charge = − 13 e Strangeness = −1 m s / ((m u + m d )/2) = 27.5 ± 1.0 I (J P ) = 0( 12 + ) Charge = 23 e m = 1.275 ± 0.025 GeV Charm = +1 I (J P ) = 0( 12 + ) b Charge = − 13 e Bottom = −1 m b (MS) = 4.18 ± 0.03 GeV m b (1S) = 4.66 ± 0.03 GeV I (J P ) = 0( 12 + ) t Charge = 32 e Top = +1 Mass (dire t measurements) m = 173.21 ± 0.51 ± 0.71 GeV [a,b℄ + 5 GeV [a℄ Mass (MS from ross-se tion measurements) m = 160 − 4 4. 0 Mass (Pole from ross-se tion measurements) m = 176.7 + − 3.4 GeV m t − m t = − 0.2 ± 0.5 GeV (S = 1.1) Full ¡ width ¢ ¡ = 2.0 ± 0.5 GeV¢ W b / W q (q = b , s , d ) = 0.91 ± 0.04 t-quark EW Couplings F0 = 0.690 ± 0.030 F− = 0.314 ± 0.025 F+ = 0.008 ± 0.016 FV +A < 0.29, CL = 95% t DECAY MODES Fra tion ( i / ) W q (q = b , s , d ) Wb ℓ νℓ anything γ q (q =u , ) Z q (q =u , ) [ p Con den e level (MeV/ ) ℄ (9.4 ± 2.4) % [e ℄ < 5 . 9 × 10−3 95% { { { { 95% { ,d T = 1 weak neutral urrent (T1 ) modes T1 [f ℄ < 2.1 × 10−3 MesonSummaryTable 34 S C I G (J PC ) = 0+(0 − + ) η LIGHT UNFLAVORED MESONS ( = = = 0) √ For I = 1 (π , b , ρ, a): ud , (uu −dd )/ 2, du ; for I = 0 (η , η′ , h, h′ , ω , φ, f , f ′ ): 1 (u u + d d ) + 2 (s s ) B Mass m = 547.862 ± 0.018 MeV Full width = 1.31 ± 0.05 keV C-non onserving de ay parameters π+ π− π0 π+ π− π0 π+ π− π0 π+ π− γ π+ π− γ I G (J P ) = 1− (0− ) π± Mass m = 139.57018 ± 0.00035 MeV (S = 1.2) Mean life τ = (2.6033 ± 0.0005) × 10−8 s (S = 1.2) τ = 7.8045 m π ± → ℓ± ν γ form fa tors [a℄ CP-non onserving de ay parameters π + π − e + e − de ay-plane asymmetry Aφ = (− 0.6 ± 3.1) × 10−2 Dalitz plot parameter π0 π0 π0 α = − 0.0315 ± 0.0015 FV = 0.0254 ± 0.0017 FA = 0.0119 ± 0.0001 FV slope parameter a = 0.10 ± 0.06 009 R = 0.059 +− 00..008 η DECAY MODES π − modes are harge onjugates of the modes below. For de ay limits to parti les whi h are not established, see the se tion on Sear hes for Axions and Other Very Light Bosons. π + DECAY MODES µ+ νµ µ+ νµ γ e + νe e + νe γ e + νe π0 e + νe e + e − e + νe ν ν [b ℄ [ ℄ [b ℄ [ ℄ Fra tion ( i / ) p Con den e level (MeV/ ) (99.98770 ± 0.00004) % ( 2.00 ± 0.25 ) × 10−4 ( 1.230 ± 0.004 ) × 10−4 ( 7.39 ± 0.05 ) × 10−7 ( 1.036 ± 0.006 ) × 10−8 ( 3.2 ± 0.5 ) × 10−9 < 5 × 10−6 90% Lepton Family number (LF) or Lepton number (L) violating modes × 10−3 90% L [d ℄ < 1.5 LF [d ℄ < 8.0 × 10−3 90% LF < 1. 6 × 10−6 90% µ+ ν e µ+ νe µ− e + e + ν 30 30 70 70 4 70 70 30 30 30 I G (J PC ) = 1− (0 − + ) 0 π Mass m = 134.9766 ± 0.0006 MeV (S = 1.1) m π± − m π0 = 4.5936 ± 0.0005 MeV Mean life τ = (8.52 ± 0.18) × 10−17 s (S = 1.2) τ = 25.5 nm For de ay limits to parti les whi h are not established, see the appropriate Sear h se tions (A0 (axion) and Other Light Boson (X 0 ) Sear hes, et .). π 0 DECAY MODES 2γ e+ e− γ γ positronium e+ e+ e− e− e+ e− 4γ νν νe ν e νµ ν µ ντ ν τ γνν Fra tion ( i / ) S ale fa tor/ p Con den e level (MeV/ ) (98.823 ± 0.034) % ( 1.174 ± 0.035) % ( 1.82 ± 0.29 ) × 10−9 ( 3.34 ± 0.16 ) × 10−5 ( 6.46 ± 0.33 ) × 10−8 < 2 × 10−8 [e ℄ < 2.7 × 10−7 < 1.7 × 10−6 < 1.6 × 10−6 < 2.1 × 10−6 < 6 × 10−4 S=1.5 S=1.5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% 0.11 −2 left-right asymmetry = (0.09 + − 0.12 ) × 10 0.10 ) × 10−2 sextant asymmetry = (0.12 + − 0.11 quadrant asymmetry = (− 0.09 ± 0.09) × 10−2 left-right asymmetry = (0.9 ± 0.4) × 10−2 β (D-wave) = − 0.02 ± 0.07 (S = 1.3) 67 67 67 67 67 67 67 67 67 67 67 Charge onjugation (C ) or Lepton Family number (LF ) violating modes 67 C < 3. 1 × 10−8 CL=90% 26 µ+ e − LF < 3.8 × 10−10 CL=90% 26 µ− e + LF < 3.4 × 10−9 CL=90% 26 µ+ e − + µ− e + LF < 3.6 × 10−10 CL=90% neutral modes 2γ 3π 0 π 0 2γ 2 π 0 2γ 4γ invisible harged modes π+ π− π0 π+ π− γ e+ e− γ µ+ µ− γ Fra tion ( i / ) S ale fa tor/ p Con den e level (MeV/ ) Neutral modes (72.12 ± 0.34) % (39.41 ± 0.20) % (32.68 ± 0.23) % ( 2.7 ± 0.5 ) × 10−4 < 1.2 × 10−3 < 2.8 × 10−4 < 1. 0 × 10−4 S=1.2 S=1.1 S=1.1 S=1.1 CL=90% CL=90% CL=90% Charged modes (28.10 ± 0.34) % (22.92 ± 0.28) % ( 4.22 ± 0.08) % ( 6.9 ± 0.4 ) × 10−3 ( 3.1 ± 0.4 ) × 10−4 × 10−6 < 5. 6 ( 5.8 ± 0.8 ) × 10−6 ( 2.40 ± 0.22) × 10−5 ( 2.68 ± 0.11) × 10−4 < 1. 6 × 10−4 < 3. 6 × 10−4 < 3. 6 × 10−4 < 1. 7 × 10−4 < 2.1 × 10−3 < 5 × 10−4 < 3 × 10−6 S=1.2 S=1.2 S=1.1 S=1.3 { 274 179 257 238 274 { { CL=90% CL=90% 174 236 274 253 274 253 274 235 253 161 113 256 236 174 210 Charge onjugation (C ), Parity (P ), Charge onjugation × Parity (CP ), or Lepton Family number (LF ) violating modes π0 γ C < 9 × 10−5 CL=90% CL=90% π+ π− P,CP < 1. 3 × 10−5 < 3. 5 × 10−4 2π0 P,CP CL=90% CL=90% C < 5 × 10−4 2π0 γ CL=90% 3π0 γ C < 6 × 10−5 3γ CL=90% C < 1.6 × 10−5 0 P,CP CL=90% < 6. 9 × 10−7 4π CL=90% π0 e + e − C [f ℄ < 4 × 10−5 CL=90% π 0 µ+ µ− C [f ℄ < 5 × 10−6 µ+ e − + µ− e + LF < 6 × 10−6 CL=90% 257 236 238 238 179 274 40 257 210 264 e+ e− µ+ µ− 2e + 2e − π + π − e + e − (γ ) e + e − µ+ µ− 2µ+ 2µ− µ+ µ− π + π − π+ e − ν e + . . π + π − 2γ π+ π− π0 γ π 0 µ+ µ− γ f0 (500) or was σ [g ℄ 0 (600) f CL=90% CL=90% CL=90% CL=90% CL=90% I G (J PC ) = 0+(0 + +) Mass m = (400{550) MeV Full width = (400{700) MeV 3γ f0 (500) DECAY MODES Fra tion ( i / ) ππ γγ dominant seen p (MeV/ ) { { MesonSummaryTable 35 I G (J PC ) = 1+(1 − − ) ρ(770) [h℄ Mass m = 775.26 ± 0.25 MeV Full width = 149.1 ± 0.8 MeV ee = 7.04 ± 0.06 keV ρ(770) DECAY MODES Fra tion ( i / ) ππ ∼ 100 π± γ π± η π± π+ π− π0 ( 4.5 ± 0.5 < 6 < 2.0 % ρ(770)± de ays π+ π− γ π0 γ ηγ π0 π0 γ µ+ µ− ( ( ( ( ( ( [i ℄ [i ℄ e+ e− π+ π− π0 ( π+ π− π+ π− π+ π− π0 π0 π0 e + e − ( ( < S ale fa tor/ p Con den e level (MeV/ ) 363 ) × 10−4 × 10−3 × 10−3 ρ(770)0 de ays 9.9 ± 1.6 ) × 10−3 6.0 ± 0.8 ) × 10−4 3.00 ± 0.20 ) × 10−4 4.5 ± 0.8 ) × 10−5 4.55 ± 0.28 ) × 10−5 4.72 ± 0.05 ) × 10−5 +0.54 ± 0.34) × 10−4 1.01 − 0.36 1.8 ± 0.9 ) × 10−5 1.6 ± 0.8 ) × 10−5 1.2 × 10−5 Mass m = 782.65 ± 0.12 MeV (S = 1.9) Full width = 8.49 ± 0.08 MeV ee = 0.60 ± 0.02 keV ω (782) DECAY MODES π+ π− π0 π0 γ π+ π− neutrals (ex luding π0 γ ) 362 376 194 363 373 388 323 CL=90% 251 257 376 π + e − νe + . . γ e+ e− π0 γ γ 4π0 e+ e− invisible Fra tion ( i / ) S ale fa tor/ p Con den e level (MeV/ ) (89.2 ± 0.7 ) % ( 8.28 ± 0.28) % .11 ( 1.53 +0 − 0.13 ) % +8 ( 8 − 5 ) × 10−3 ( 4.6 ± 0.4 ) × 10−4 ( 7.7 ± 0.6 ) × 10−4 ( 1.3 ± 0.4 ) × 10−4 ( 7.28 ± 0.14) × 10−5 < 2 × 10−4 < 3. 6 × 10−3 < 1 × 10−3 ( 6.6 ± 1.1 ) × 10−5 < 3.3 × 10−5 ( 9.0 ± 3.1 ) × 10−5 < 1. 9 × 10−4 S=2.1 327 380 S=1.2 366 S=1.1 { CL=95% 200 380 349 391 262 366 256 367 162 377 391 Charge onjugation (C ) violating modes C CL=90% < 2.1 × 10−4 C CL=90% < 2.1 × 10−4 − 4 < 2.3 × 10 CL=90% C 162 367 330 e+ e− π+ π− π0 π0 π+ π− γ π+ π− π+ π− π0 π0 γ η π0 γ µ+ µ− 3γ S=2.1 S=1.3 CL=90% CL=95% CL=90% CL=90% Mass m = 957.78 ± 0.06 MeV Full width = 0.198 ± 0.009 MeV η′ (958) DECAY MODES π+ π− η ρ0 γ (in luding non-resonant π+ π− γ ) π0 π0 η ωγ γγ 3π 0 µ+ µ− γ π + π − µ+ µ− π+ π− π0 π 0 ρ0 p Fra tion ( i / ) Con den e level (MeV/ ) (42.9 ± 0.7 ) % (29.1 ± 0.5 ) % (22.2 ± 0.8 ) % ( 2.75 ± 0.23) % ( 2.20 ± 0.08) % ( 2.14 ± 0.20) × 10−3 ( 1.08 ± 0.27) × 10−4 < 2.9 × 10−5 ( 3.8 ± 0.4 ) × 10−3 < 4 % × 10−5 90% 90% 95% 90% 95% 90% .3 −3 ( 2.4 +1 − 1.0 ) × 10 − < 2. 1 × 10 4 × 10−4 < 9 < 8 × 10−4 < 5 × 10−4 < 2. 1 × 10−7 < 5 × 10−4 90% 90% 90% 90% 90% 90% 469 479 469 380 479 90% 90% 90% 90% 90% 90% 90% 90% 458 459 469 322 479 445 273 473 < 2. 5 < 1 % × 10−3 < 1. 9 < 1 % < 3.1 π+ π− π0 π0 π0 e + e − η e+ e− 3γ µ+ µ− π 0 µ+ µ− η eµ f0 (980) [j ℄ 372 376 { 298 197 189 458 Charge onjugation (C ), Parity (P ), Lepton family number (LF ) violating modes P,CP < 6 × 10−5 P,CP < 4 × 10−4 C [f ℄ < 1.4 × 10−3 C [f ℄ < 2.4 × 10−3 C < 1.0 × 10−4 C [f ℄ < 6.0 × 10−5 C [f ℄ < 1 . 5 × 10−5 LF < 4.7 × 10−4 { I G (J PC ) = 0+(0 + +) f0 (980) DECAY MODES Fra tion ( i / ) ππ dominant seen seen KK γγ a0 (980) [j ℄ 232 165 90% 90% 239 159 479 430 467 401 428 111 p (MeV/ ) 476 36 495 I G (J PC ) = 1− (0 + +) Mass m = 980 ± 20 MeV Full width = 50 to 100 MeV a0 (980) DECAY MODES Fra tion ( i / ) ηπ dominant seen seen KK γγ p (MeV/ ) 319 † 490 I G (J PC ) = 0− (1 − − ) φ(1020) Mass m = 1019.461 ± 0.019 MeV (S = 1.1) Full width = 4.266 ± 0.031 MeV (S = 1.2) φ(1020) DECAY MODES K+K− K 0L K 0S ρπ + π+ π − π 0 ηγ π0 γ ℓ+ ℓ− I G (J PC ) = 0+(0 − + ) η ′ (958) × 10−4 × 10−3 < 2.4 Mass m = 990 ± 20 MeV Full width = 40 to 100 MeV S=1.1 ηγ π0 e + e − π 0 µ+ µ− η π0 375 152 254 π+ π− e + e − I G (J PC ) = 0− (1 − − ) ω (782) 2π0 3π0 S=2.2 CL=84% CL=84% 2(π+ π− ) π + π − 2π 0 2(π+ π− ) neutrals 2(π+ π− ) π0 2(π+ π− )2π0 3(π+ π− ) e+ e− µ+ µ− η e+ e− π+ π− ω π0 ωγ ργ π+ π− γ f0 (980) γ π0 π0 γ π+ π− π+ π− π+ π+ π− π− π0 π0 e + e − π0 η γ S ale fa tor/ p Con den e level (MeV/ ) Fra tion ( i / ) (48.9 ± 0.5 ) % (34.2 ± 0.4 ) % (15.32 ± 0.32 ) % ( 1.309 ± 0.024) % ( 1.27 ± 0.06 ) × 10−3 | ( 2.954 ± 0.030) × 10−4 ( 2.87 ± 0.19 ) × 10−4 ( 1.15 ± 0.10 ) × 10−4 ( 7.4 ± 1.3 ) × 10−5 ( 4.7 ± 0.5 ) × 10−5 < 5 % S=1.1 S=1.1 S=1.1 S=1.2 S=1.1 CL=84% × 10−5 CL=90% ± 1.3 ) × 10−5 ( 3.22 ± 0.19 ) × 10−4 S=1.1 ( 1.13 ± 0.06 ) × 10−4 < 1. 2 ( 4.1 ( 4.0 +2.8 ) × 10−6 − 2. 2 < 4. 6 × 10−6 CL=90% ( 1.12 ± 0.28 ) × 10−5 ( 7.27 ± 0.30 ) × 10−5 S=1.5 127 110 { 363 501 510 510 499 363 490 172 209 215 490 29 492 410 342 501 346 MesonSummaryTable 36 a0 (980) γ K0K0γ ) × 10−5 × 10−8 ( 6.25 ± 0.21 ) × 10−5 < 2 × 10−5 ( 1.4 ± 0.5 ) × 10−5 < 1. 2 × 10−4 < 1.8 × 10−5 < 9.4 × 10−6 × 10−6 < 1 ( 7.6 ± 0. 6 < 1.9 η ′ (958) γ η π0 π0 γ µ+ µ− γ ργ γ η π+ π− η µ+ µ− η U → η e+ e− 39 110 60 293 499 215 288 321 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% { Lepton Faminly number (LF) violating modes e ± µ∓ LF h1 (1170) < 2 × 10−6 CL=90% 504 ρπ seen b1 (1235) 308 I G (J PC ) = 1+(1 + − ) ωπ Fra tion ( i / ) φπ a1 (1260) [k ℄ π0 π0 π+ π− 2 π + 2π − ρ0 ρ0 a0 (980) π [ignoring a0 (980) → K K℄ η π π [ex luding a0 (980) π ℄ KKπ K K ∗ (892) π+ π− π0 ρ± π ∓ γ ρ0 φγ p dominant K ∗ (892)± K ∓ (KK )± π0 K 0S K 0L π± K 0S K 0S π± + 2.1 ) % (33.1 − 1. 8 1. 4 (22.0 + − 1. 2 ) % + (11.0 − 00..67 ) % 0. 7 (11.0 + − 0. 6 ) % seen < 7 × 10−4 (35 ± 15 ) % 1.9 (52.4 + − 2. 2 ) % (36 ± 7 ) % Con den e level (MeV/ ) 348 [D/S amplitude ratio = 0.277 ± 0.027℄ π± γ ηρ π+ π+ π− π0 4π ηππ Mass m = 1229.5 ± 3.2 MeV (S = 1.6) Full width = 142 ± 9 MeV (S = 1.2) b1 (1235) DECAY MODES Fra tion ( i / ) η π+ π− p (MeV/ ) ( 1.6 ± 0.4) × 10−3 seen < 50 % seen < 8 % < 6 % < 2 % < 1.5 % 90% 90% 90% 84% 248 235 235 147 † I G (J PC ) = 1− (1 + +) η (1295) DECAY MODES η π+ π− a0 (980) π η π0 π0 η (ππ )S -wave π (1300) Mass m = 1230 ± 40 MeV [l ℄ Full width = 250 to 600 MeV a1 (1260) DECAY MODES (ρπ )S −wave (ρπ )D −wave ( ρ(1450) π )S −wave ( ρ(1450) π )D −wave σπ f0 (980) π f0 (1370) π f2 (1270) π K K ∗ (892)+ . . πγ 353 353 † † { Mass m = 1275.1 ± 1.2 MeV (S = 1.1) 2. 9 Full width = 185.1 + − 2.4 MeV (S = 1.5) f2 (1270) DECAY MODES ππ π + π − 2π 0 KK 2π+ 2π− K 0 K − π+ + . . e+ e− Fra tion ( i / ) seen seen a2 (1320) a2 (1320) DECAY MODES S=1.2 623 S=1.3 562 S=2.8 S=1.2 S=2.1 403 559 326 564 638 477 293 638 S=1.9 CL=95% CL=95% CL=90% CL=90% 568 479 † S=1.2 482 238 S=1.1 482 308 † CL=95% S=2.8 603 390 407 236 p (MeV/ ) 487 248 490 { p (MeV/ ) 404 { Fra tion ( i / ) S ale fa tor/ p Con den e level (MeV/ ) (70.1 ± 2.7 ) % (14.5 ± 1.2 ) % (10.6 ± 3.2 ) % ( 4.9 ± 0.8 ) % ( 5.3 ± 0.9 ) × 10−3 ( 2.68 ± 0.31) × 10−3 ( 9.4 ± 0.7 ) × 10−6 < 5 × 10−9 ηπ ωππ KK .4 (84.8 +2 − 1.2 ) % .4 ( 7.1 +1 − 2.7 ) % ( 4.6 ± 0.4 ) % ( 2.8 ± 0.4 ) % ( 4.0 ± 0.8 ) × 10−3 ( 3.0 ± 1.0 ) × 10−3 ( 1.64 ± 0.19) × 10−5 < 8 × 10−3 < 3.4 × 10−3 × 10−10 < 6 336 I G (J PC ) = 1− (2 + +) 0. 5 Mass m = 1318.3 + − 0.6 MeV (S = 1.2) Full width = 107 ± 5 MeV [l ℄ 3π S ale fa tor/ p Con den e level (MeV/ ) S=1.3 = 200 to 600 MeV Fra tion ( i / ) † † 563 seen seen seen seen ρπ π (ππ )S -wave † 608 S=1.3 Fra tion ( i / ) π (1300) DECAY MODES 179 I G (J PC ) = 0+(2 + +) f2 (1270) ηη 4π0 γγ ηππ p (MeV/ ) Fra tion ( i / ) 566 I G (J PC ) = 1− (0 − + ) Mass m = 1300 ± 100 MeV [l ℄ Full width seen seen seen seen seen not seen seen seen seen seen 568 S=1.3 Mass m = 1294 ± 4 MeV (S = 1.6) Full width = 55 ± 5 MeV † 535 (16 ± 7 ) % ( 9.0 ± 0.4) % not seen ( 3.0 ± 0.9) × 10−3 < 3. 1 × 10−3 ( 5.5 ± 1.3) % ( 7.4 ± 2.6) × 10−4 S=1.3 I G (J PC ) = 0+(0 − + ) η (1295) 607 84% S ale fa tor/ p Con den e level (MeV/ ) f1 (1285) DECAY MODES 4π0 Mass m = 1170 ± 20 MeV Full width = 360 ± 40 MeV Fra tion ( i / ) Mass m = 1281.9 ± 0.5 MeV (S = 1.8) Full width = 24.2 ± 1.1 MeV (S = 1.3) ρ0 π + π − I G (J PC ) = 0− (1 + − ) h1 (1170) DECAY MODES I G (J PC ) = 0+(1 + +) f1 (1285) η ′ (958) π π± γ γγ e+ e− f0 (1370) [j ℄ S=1.2 S=1.3 CL=90% I G (J PC ) = 0+(0 + +) Mass m = 1200 to 1500 MeV Full width = 200 to 500 MeV 624 535 366 437 288 652 659 659 MesonSummaryTable 37 f0 (1370) DECAY MODES Fra tion ( i / ) ππ seen seen seen seen seen dominant seen seen seen seen seen not seen not seen not seen seen not seen 4π 4π 0 2π+ 2π− π + π − 2π 0 ρρ 2(ππ )S -wave π (1300) π a1 (1260) π ηη KK K K nπ 6π ωω γγ e+ e− π1 (1400) [n℄ p (MeV/ ) 672 617 617 612 615 † { † 35 411 475 η π0 η π− 508 † I G (J PC ) = 1− (1 − + ) p (MeV/ ) Fra tion ( i / ) 557 556 KKπ ηππ a0 (980) π η (ππ )S -wave f0 (980) η 4π ρρ ρ0 γ K ∗ (892) K f1 (1420) [p ℄ seen seen seen seen seen seen <58 % seen seen Fra tion ( i / ) πη π η′ (958) seen seen seen seen seen seen KK ωππ a0 (980) π π γγ ρ(1450) [r ℄ p Con den e level (MeV/ ) Fra tion ( i / ) ππ 4π seen seen seen possibly seen not seen not seen possibly seen possibly seen not seen not seen not seen not seen ηρ a2 (1320) π KK K K ∗ (892)+ . . ηγ η (1475) [o ℄ { † 639 99.85% † 491 123 ηππ φγ dominant dominant possibly seen seen KKπ K K ∗ (892)+ . . ω (1420) [q ℄ η (1475) DECAY MODES KKπ K K ∗ (892)+ . . a0 (980) π γγ f0 (1500) [n℄ p (MeV/ ) 438 163 573 349 Mass m (1400{1450) MeV Full width (180{250) MeV Fra tion ( i / ) ρπ ωππ dominant seen seen seen b1 (1235) π e+ e− 720 669 732 311 54 541 229 630 { 398 92 178 I G (J PC ) = 0+(0 − + ) p (MeV/ ) Fra tion ( i / ) dominant seen seen seen 477 245 396 738 I G (J PC ) = 0+(0 + +) Mass m = 1505 ± 6 MeV (S = 1.3) Full width = 109 ± 7 MeV I G (J PC ) = 0− (1 − − ) ω (1420) DECAY MODES p (MeV/ ) Mass m = 1476 ± 4 MeV (S = 1.3) Full width = 85 ± 9 MeV (S = 1.5) Mass m = 1426.4 ± 0.9 MeV (S = 1.1) Full width = 54.9 ± 2.6 MeV Fra tion ( i / ) 627 410 547 484 342 737 I G (J PC ) = 1+(1 − − ) ρ(1450) DECAY MODES 424 562 345 I G (J PC ) = 0+(1 + +) f1 (1420) DECAY MODES p (MeV/ ) Mass m = 1465 ± 25 MeV [l ℄ Full width = 400 ± 60 MeV [l ℄ f0 (500) γ f0 (980) γ f0 (1370) γ f2 (1270) γ I G (J PC ) = 0+(0 − + ) Fra tion ( i / ) a0 (1450) DECAY MODES e+ e− Mass m = 1408.8 ± 1.8 MeV [l ℄ (S = 2.1) Full width = 51.0 ± 2.9 MeV [l ℄ (S = 1.8) η (1405) DECAY MODES Mass m = 1474 ± 19 MeV Full width = 265 ± 13 MeV 685 685 seen seen η (1405) [o ℄ I G (J PC ) = 1− (0 + +) † Mass m = 1354 ± 25 MeV (S = 1.8) Full width = 330 ± 35 MeV π1 (1400) DECAY MODES a0 (1450) [j ℄ p (MeV/ ) 486 444 125 710 f0 (1500) DECAY MODES Fra tion ( i / ) ππ π+ π− 2π 0 4π 4π 0 2 π + 2π − 2(ππ )S -wave ρρ π (1300) π a1 (1260) π ηη η η′ (958) (34.9 ± 2.3) % seen seen (49.5 ± 3.3) % seen seen seen seen seen seen ( 5.1 ± 0.9) % ( 1.9 ± 0.8) % ( 8.6 ± 1.0) % not seen KK γγ p S ale fa tor (MeV/ ) 1.2 1.2 741 740 741 691 691 687 { † 1.4 1.7 1.1 144 218 516 † 568 753 MesonSummaryTable 38 ′ 2 f (1525) 2 I G (J PC ) = 0+(2 + +) Mass m = 1525 ± 5 MeV [l ℄ + 6 MeV [l ℄ Full width = 73 − 5 Fra tion ( i / ) ηη ππ γγ (88.7 ± 2.2 ) % (10.4 ± 2.2 ) % ( 8.2 ± 1.5 ) × 10−3 ( 1.10 ± 0.14) × 10−6 KK π1 (1600) [n℄ Fra tion ( i / ) πππ ρ0 π − not seen not seen not seen seen seen seen f2 b1 (1235) π η ′ (958) π − f1 (1285) π η2 (1645) 581 530 750 763 Fra tion ( i / ) η π+ π− seen seen seen seen seen not seen ω (1650) [s ℄ 803 641 318 357 543 314 ρπ ωππ ωη seen seen seen seen e+ e− ω3 (1670) † K K ∗ (892)+ . . K 0S K π KK e+ e− Fra tion ( i / ) ρπ ωππ seen seen possibly seen I G (J PC ) = 1− (2 − + ) Mass m = 1672.2 ± 3.0 MeV [l ℄ (S = 1.4) Full width = 260 ± 9 MeV [l ℄ (S = 1.2) 455 304 836 147 365 323 292 dominant seen seen seen not seen seen 462 621 680 840 623 544 I G (J PC ) = 1+(3 − − ) (S = 1.5) Fra tion ( i / ) 4π (71.1 ± 1.9 ) % (67 ± 22 ) % (16 ± 6 ) % (23.6 ± 1.3 ) % ( 3.8 ± 1.2 ) % ( 1.58 ± 0.26) % seen seen seen π± π+ π− π0 ωπ ππ KKπ Ex luding 2ρ and a2 (1320) π . a2 (1320) π ρρ ρ(1700) [r ℄ p (MeV/ ) Fra tion ( i / ) ρ3 (1690) DECAY MODES KK 647 617 500 835 90% 97.7% 97.7% possibly seen not seen Mass m = 1688.8 ± 2.1 MeV [l ℄ Full width = 161 ± 10 MeV [l ℄ p S ale fa tor (MeV/ ) 1.2 seen seen 790 787 655 834 629 685 727 520 633 307 335 I G (J PC ) = 1+(1 − − ) Mass m = 1720 ± 20 MeV [l ℄ (η ρ0 and π+ π− modes) Full width = 250 ± 100 MeV [l ℄ (η ρ0 and π+ π− modes) I G (J PC ) = 0− (3 − − ) ω3 (1670) DECAY MODES π2 (1670) φ(1680) DECAY MODES η π+ π− ρ(770) η ππρ p (MeV/ ) { { Mass m = 1680 ± 20 MeV [l ℄ Full width = 150 ± 50 MeV [l ℄ p (MeV/ ) 242 580 404 685 499 809 329 648 I G (J PC ) = 0− (1 − − ) ρ3 (1690) Mass m = 1667 ± 4 MeV Full width = 168 ± 10 MeV [l ℄ b1 (1235) π ωρ γγ ρ(1450) π b1 (1235) π K + K − π+ π− Mass m = 1670 ± 30 MeV Full width = 315 ± 35 MeV Fra tion ( i / ) K K ∗ (892)+ . . ωππ I G (J PC ) = 0− (1 − − ) ω (1650) DECAY MODES ρπ σπ (ππ )S -wave p (MeV/ ) I G (J PC ) = 0+(2 − + ) η2 (1645) DECAY MODES a0 (980) π f2 (1270) η (95.8 ± 1.4) % (56.3 ± 3.2) % (31 ± 4 ) % (10.9 ± 3.4) % ( 8.7 ± 3.4) % ( 4.2 ± 1.4) % ( 2.7 ± 1.1) % < 2.8 × 10−7 < 3.6 × 10−3 < 1.9 × 10−3 φ(1680) Mass m = 1617 ± 5 MeV Full width = 181 ± 11 MeV a2 (1320) π KKπ K∗K 3π f1 (1285) π a2 (1320) π (S = 1.4) π1 (1600) DECAY MODES (1270) π− p (MeV/ ) I G (J PC ) = 1− (1 − + ) + 8 MeV Mass m = 1662 − 9 Full width = 241 ± 40 MeV Fra tion ( i / ) f2 (1270) π f ′2 (1525) DECAY MODES p Con den e level (MeV/ ) π2 (1670) DECAY MODES ρ(1700) DECAY MODES 2(π+ π− ) p (MeV/ ) 645 615 361 ρπ π ρ0 π + π − ρ± π ∓ π 0 a1 (1260) π h1 (1170) π π (1300) π ρρ π+ π− ππ K K ∗ (892)+ . . ηρ a2 (1320) π KK e+ e− π0 ω Fra tion ( i / ) large dominant large large seen seen seen seen seen seen seen seen not seen seen seen seen p (MeV/ ) 803 653 651 652 404 447 349 372 849 849 496 545 334 704 860 674 MesonSummaryTable 39 I G (J PC ) = 0+(0 + +) f0 (1710) [t ℄ 6 = 1722 + − 5 MeV Mass m Full width (S = 1.6) = 135 ± 7 MeV (S = 1.1) f0 (1710) DECAY MODES Fra tion ( i / ) ηη ππ ωω seen seen seen seen KK p (MeV/ ) 705 664 850 358 π+ π− π− Fra tion ( i / ) seen seen seen seen not seen not seen seen seen not seen not seen not seen seen seen seen not seen f0 (500) π− f0 (980) π− f0 (1370) π− f0 (1500) π− ρπ − η η π− a0 (980) η a2 (1320) η f2 (1270) π f0 (1370) π− f0 (1500) π− η η′ (958) π − K ∗0 (1430) K − K ∗ (892) K − { 625 368 250 732 661 473 † 442 368 250 375 † 570 Mass m = 1854 ± 7 MeV + 28 MeV Full width = 87 − 23 φ3 (1850) DECAY MODES KK K K ∗ (892)+ . . seen seen p (MeV/ ) 785 602 I G (J PC ) = 0+(2 + +) f2 (1950) f4 (2050) DECAY MODES f2 (1950) DECAY MODES Fra tion ( i / ) seen seen seen seen seen seen seen seen π+ π− π0 π0 4π ηη KK γγ pp I G (J PC ) = 0+(2 + +) f2 (2010) 60 = 2011 + − 80 MeV Mass m Full width = 202 ± 60 MeV Fra tion ( i / ) seen (17.0 ± 1.5) % +3.4 ) × 10−3 ( 6.8 − 1.8 ( 2.1 ± 0.8) × 10−3 ωω ππ KK ηη 4π0 < 1. 2 a2 (1320) π % seen p (MeV/ ) 637 1000 880 848 964 567 I G (J PC ) = 0− (1 − − ) Mass m = 2175 ± 15 MeV (S = 1.6) Full width = 61 ± 18 MeV φ(2170) DECAY MODES Fra tion ( i / ) e+ e− seen seen seen φ f0 (980) K + K − π0 π0 seen not seen not seen p (MeV/ ) 1087 416 { { 770 622 I G (J PC ) = 0+(2 + +) f2 (2300) Mass m = 1944 ± 12 MeV (S = 1.5) Full width = 472 ± 18 MeV K ∗ (892) K ∗ (892) 868 974 841 580 819 624 918 761 Mass m = 2018 ± 11 MeV (S = 2.1) Full width = 237 ± 18 MeV (S = 1.9) K + K − f0 (980) → K + K − π+ π− K + K − f0 (980) → K ∗0 K ± π ∓ K ∗ (892)0 K ∗ (892)0 Mass m = 1895 ± 16 MeV Full width = 235 ± 34 MeV p (MeV/ ) I G (J PC ) = 0+(4 + +) f4 (2050) φ(2170) I G (J PC ) = 1− (2 − + ) π2 (1880) ω π− π0 ωρ η π0 ′ η (958) π (S = 1.2) Fra tion ( i / ) Fra tion ( i / ) seen seen seen seen seen seen seen seen f2 (1270) π 879 † 876 + 10 MeV (S = 1.1) Mass m = 1996 − 9 + 28 MeV (S = 1.3) Full width = 255 − 24 π+ π− π0 ρπ p (MeV/ ) p (MeV/ ) I G (J PC ) = 1− (4 + +) a4 (2040) KK I G (J PC ) = 0− (3 − − ) φ3 (1850) seen seen a4 (2040) DECAY MODES Mass m = 1812 ± 12 MeV (S = 2.3) Full width = 208 ± 12 MeV π (1800) DECAY MODES Fra tion ( i / ) KK I G (J PC ) = 1− (0 − + ) π (1800) f2 (2010) DECAY MODES φφ Mass m = 2297 ± 28 MeV Full width = 149 ± 40 MeV p (MeV/ ) 387 962 963 925 803 837 972 254 f2 (2300) DECAY MODES Fra tion ( i / ) φφ seen seen seen KK γγ p (MeV/ ) 529 1037 1149 I G (J PC ) = 0+(2 + +) f2 (2340) Mass m = 2339 ± 60 MeV 80 Full width = 319 + − 70 MeV f2 (2340) DECAY MODES Fra tion ( i / ) φφ ηη seen seen p (MeV/ ) 573 1033 40 MesonSummaryTable π + π − µ+ νµ π 0 π 0 π 0 e + νe STRANGE MESONS ( = ± 1, = = 0) K+ = us, K0 S = ds, K0 C B = d s, K − K± = u s, I (J P ) similarly for = 21 (0− ) Slope parameter g [v ℄ (See Parti le Listings for quadrati oeÆ ients and alternative parametrization related to ππ s attering) K ± → π ± π + π − g = − 0.21134 ± 0.00017 (g+ − g− ) / (g+ + g− ) = (− 1.5 ± 2.2) × 10−4 K ± → π ± π 0 π 0 g = 0.626 ± 0.007 (g+ − g− ) / (g+ + g− ) = (1.8 ± 1.8) × 10−4 de ay form fa tors [a,x ℄ Assuming µ-e universality + ) = λ (K + ) = (2.97 ± 0.05) × 10−2 λ+ (K µ + e3 3 + ) = (1.95 ± 0.12) × 10−2 λ0 (K µ 3 Not assuming µ-e universality ) = (2.98 ± 0.05) × 10−2 λ+ (K + e3 form fa tor quadrati t ) linear oe . = (2.49 ± 0.17) × 10−2 λ'+ (K ± e3 ± ′′ λ + (K e 3 ) quadrati oe . = (0.19 ± 0.09) × 10−2 ¯ ¯ ¯fS /f+ ¯ = (− 0.3 + 0.8 ) × 10−2 − 0.7 )>0)− (cos(θ )<0) Kµ Kµ −2 AF B (K ± π µ µ ) = (cos(θ K µ )>0)+ (cos(θ K µ )<0) < 2.3 × 10 , CL = 90% T violation parameters K + → π 0 µ+ νµ K + → µ+ νµ γ K + → π 0 µ+ ν µ K K 2.5) × 10−3 PT = (− 1.7 ± PT = (− 0.6 ± 1.9) × 10−2 e + νe µ+ νµ π 0 e + νe Called π 0 µ+ ν µ Called π 0 π 0 e + νe π + π − e + νe Fra tion ( i / ) S ale fa tor/ p Con den e level (MeV/ ) Leptoni and semileptoni modes + K e3. + K µ3 . S=1.2 S=1.1 S=1.3 205 133 125 [y,z ℄ ( [a,aa℄ ( [a,aa℄ < [a,aa℄ < ( [y,z ℄ ( [a,aa℄ < [y,z ℄ ( 6.2 1.33 2.7 2.6 9.4 2.56 5.3 1.25 5 < ± 0.8 ) × 10−3 ± 0.22 ) × 10−5 × 10−5 × 10−4 ± 0.4 ) × 10−6 ± 0.16 ) × 10−4 × 10−5 ± 0.25 ) × 10−5 × 10−6 236 CL=90% CL=90% CL=90% CL=90% ) × 10−6 ) × 10−6 . 0 +6 7.6 − 3.0 ) × 10−6 1.04 ± 0.31 ) × 10−4 9.2 ± 0.7 ) × 10−7 1.0 × 10−4 1.19 ± 0.13 ) × 10−8 (− 4.2 ( 6.0 [y,bb℄ π+ π0 π0 γ [y,z ℄ π+ π+ π− γ π+ γ γ π + 3γ π+ e + e − γ [y,z ℄ ( [y ℄ ( [y ℄ < ( ( { { { 247 228 228 215 206 { ± 0. 9 205 ± 0.4 133 CL=90% 125 227 227 227 Leptoni modes with ℓ ℓ pairs 6 × 10−5 6.0 × 10−6 2.48 ± 0.20 ) × 10−8 7.06 ± 0.31 ) × 10−8 1.7 ± 0.5 ) × 10−8 4.1 × 10−7 < < ( ( ( < CL=90% CL=90% CL=90% K0 SQ < SQ < ( ( ( S1 S1 S1 S1 < LF LF < [d ℄ < LF < LF < < L L L L L 1.3 × 10−8 3.0 × 10−6 3.00 ± 0.09 ) × 10−7 9.4 ± 0.6 ) × 10−8 1.7 ± 1.1 ) × 10−10 4.3 × 10−5 2.1 × 10−8 4 × 10−3 1.3 × 10−11 5.2 × 10−10 5.0 × 10−10 6.4 × 10−10 1.1 × 10−9 3.3 × 10−3 3 × 10−3 2. 3 × 10−9 < [d ℄ < [d ℄ < < [ ℄< I (J P ) 50% CL=90% CL=95% S=2.6 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% = 21 (0− ) KS , 50% KL Mass m = 497.614 ± 0.024 MeV (S = 1.6) m K 0 − m K ± = 3.937 ± 0.028 MeV (S = 1.8) Mean Square Charge Radius 2® r = − 0.077 ± 0.010 fm2 Im(ξ ) = − 0.006 ± 0.008 − modes are harge onjugates of the modes below. + DECAY MODES π + π 0 γ (INT) π + π 0 γ (DE) π+ π+ e − ν e π + π + µ− ν µ π+ e + e − π + µ+ µ− π+ ν ν π+ π0 ν ν µ− ν e + e + µ+ νe π + µ+ e − π + µ− e + π − µ+ e + π− e + e + π − µ+ µ+ µ+ ν e π0 e + ν e π+ γ Charge Radius ® r = 0.560 ± 0.031 fm (cos(θ 151 135 247 236 247 236 223 185 Lepton Family number (LF ), Lepton number (L), S = Q (SQ ) violating modes, or S = 1 weak neutral urrent (S1 ) modes ¯ ¯ ¯fT /f+ ¯ = (− 1.2 ± 2.3) × 10−2 ¯ ¯ + K µ3 ¯fS /f+ ¯ = (0.2 ± 0.6) × 10−2 ¯ ¯ + K µ3 ¯fT /f+ ¯ = (− 0.1 ± 0.7) × 10−2 ¯ ¯ K + → e + νe γ ¯FA + FV ¯ = 0.133 ± 0.008 (S = 1.3) ¯ ¯ + + K → µ νµ γ ¯FA + FV ¯ = 0.165 ± 0.013 ¯ ¯ K + → e + νe γ ¯FA − FV ¯ < 0.49 ¯ ¯ K + → µ+ νµ γ ¯FA − FV ¯ = − 0.24 to 0.04, CL = 90% violation parameters −2 (K ± π e e ) = (− 2.2 ± 1.6) × 10 ± (K π µ µ ) = 0.010 ± 0.023 −3 (K ± π π γ ) = (0.0 ± 1.2) × 10 CL=90% Hadroni modes with photons or ℓ ℓ pairs µ K e3 CP µ+ νµ γ µ+ νµ γ (SD+ ) µ+ νµ γ (SD+ INT) µ+ νµ γ (SD− + SD− INT) e + νe γ π 0 e + νe γ π 0 e + νe γ (SD) π 0 µ+ νµ γ π 0 π 0 e + νe γ µ+ νµ ν ν e + νe e + e − µ+ νµ e + e − e + νe µ+ µ− µ+ ν µ+ µ− Ke 3 + ) × 10−5 × 10−6 ( 20.66 ± 0.08 ) % ( 1.761 ± 0.022) % ( 5.59 ± 0.04 ) % e + νe ν ν + ) = (2.96 ± 0.17) × 10−2 λ+ (K µ 3 + λ0 (K µ3 ) = (1.96 ± 0.13) × 10−2 + ± 0. 9 Leptoni and semileptoni modes with photons (S = 2.8) Mean life τ = (1.2380 ± 0.0021) × 10−8 s (S = 1.9) τ = 3.712 m K e3 1. 4 3.5 Hadroni modes π+ π0 π+ π0 π0 π+ π+ π− K ∗ 's Mass m = 493.677 ± 0.016 MeV [u ℄ ± K ( < ( 1.581 ± 0.007) × 10−5 ( 63.55 ± 0.11 ) % ( 5.07 ± 0.04 ) % S=1.2 S=2.1 247 236 228 ( 3.353 ± 0.034) % S=1.8 215 ( ( 2.2 ± 0.4 ) × 10−5 4.254 ± 0.032) × 10−5 206 203 parameters in K 0 -K 0 mixing [x ℄ Asymmetry AT in K 0 -K 0 mixing = (6.6 ± 1.6) × 10−3 T-violation parameters [x ℄ Re δ = (2.5 ± 2.3) × 10−4 Im δ = (− 1.5 ± 1.6) × 10−5 Re(y), Ke3 parameter = (0.4 ± 2.5) × 10−3 Re(x = (− 2.9 ± 2.0) × 10−3 − ), Ke 3 parameter ¯ ¯ ¯m 0 − m 0 ¯ / m average < 6 × 10−19 , CL = 90% [dd ℄ K K ( K 0 − K 0 )/m average = (8 ± 8) × 10−18 CPT-violation Tests of S = Q Re(x+ ), Ke 3 parameter = (− 0.9 ± 3.0) × 10−3 203 151 227 172 227 205 236 236 214 214 214 227 172 236 228 227 41 I (J P ) = (0−) Mean life τ = (0.8954 ± 0.0004) × 10−10 s (S = 1.1) Assuming CPT Mean life τ = (0.89564 ± 0.00033) × 10−10 s Not assuming K 0S 1 2 CPT τ = 2.6844 m Assuming CPT CP-violation parameters [ee ℄ Im(η+−0 ) = − 0.002 ± 0.009 η 000 ) = (− 0.1 ± 1.6) × 10−2 Im( ¯ ¯ ¯ ¯ ¯η 000 ¯ = ¯A(K 0 → 3π 0 )/A(K 0 → 3π 0 )¯ < 0.0088, CL = L S 90% CP asymmetry A in π+ π− e + e − = (− 0.4 ± 0.8)% K 0S DECAY MODES Hadroni modes π0 π0 π+ π− (30.69 ± 0.05) % (69.20 ± 0.05) % .1 −7 ( 3.5 +1 − 0.9 ) × 10 π+ π− π0 π+ π− γ π+ π− e + e − π0 γ γ γγ π ± e ∓ νe S ale fa tor/ p Con den e level (MeV/ ) Fra tion ( i / ) 3 e+ e− π0 e + e − π 0 µ+ µ− [z, ℄ [ ℄ ( ( ( ( 1.79 ± 0.05) × 10−3 4.79 ± 0.15) × 10−5 4.9 ± 1.8 ) × 10−8 2.63 ± 0.17) × 10−6 Semileptoni modes [gg ℄ CP S1 S1 S1 S1 < 2.6 < 9 < 9 [ ℄ m KL − m KS S=3.0 ( 7.04 ± 0.08) × 10−4 urrent (S1 ) modes × 10−8 × 10−9 × 10−9 .5 ) × 10−9 ( 3.0 +1 − 1.2 .5 −9 ( 2.9 +1 − 1.2 ) × 10 I (J P ) = K 0L 133 Modes with photons or ℓ ℓ pairs CP violating (CP) and S = 1 weak neutral π0 µ+ µ− 209 206 1 2 CL=90% CL=90% CL=90% 206 206 231 249 229 139 225 249 230 177 (0−) = (0.5293 ± 0.0009) × 1010 h s− 1 (S = 1.3) Assuming CPT = (3.484 ± 0.006) × 10−12 MeV Assuming CPT = (0.5289 ± 0.0010) × 1010 h s− 1 Not assuming CPT Mean life τ = (5.116 ± 0.021) × 10−8 s (S = 1.1) τ = 15.34 m Slope parameter g [v ℄ (See Parti le Listings for other linear and quadrati oeÆ ients) K 0L → π+ π− π0 : g = 0.678 ± 0.008 (S = 1.5) K 0L → π0 π0 π0 : h = (+0.59 ± 0.20 ± 1.16) × 10−3 KL de ay form fa tors [x ℄ Linear parametrization assuming µ-e universality 0 ) = λ (K 0 ) = (2.82 ± 0.04) × 10−2 (S = 1.1) λ+ (K µ + e3 3 0 λ0 (K µ3 ) = (1.38 ± 0.18) × 10−2 (S = 2.2) Quadrati parametrization assuming µ-e universality 0 ) = λ′ (K 0 ) = (2.40 ± 0.12) × 10−2 (S = 1.2) λ′ + (K µ + e3 3 λ′′ + (K 0µ3 ) = λ′′ + (K 0e 3 ) = (0.20 ± 0.05) × 10−2 (S = 1.2) 0 ) = (1.16 ± 0.09) × 10−2 (S = 1.2) λ0 (K µ 3 Pole parametrization assuming µ-e universality 0 0 e Mµ V (K µ3 ) = M V (K e 3 ) = 878 ± 6 MeV (S = 1.1) µ 0 M S (K µ3 ) = 1252 ± 90 MeV (S = 2.6) Dispersive parametrization assuming µ-e universality + = (0.251 ± 0.006) × 10−1 (S = 1.5) ln¯(C) = ¯(1.75 ± 0.18) × 10−1 (S = 2.0) 1. 4 −2 K 0e 3 ¯fS /f+ ¯ = (1.5 + − 1.6 ) × 10 MesonSummaryTable = (5 ) 10 = (12 12) 10 , : = 0 205 0 022 (S = 1.8) , : = 1 69 0 08 (S = 1.7) : / = 0 737 0 014 GeV K L → π 0 2γ : aV = − 0.43 ± 0.06 (S = 1.5) CP-violation parameters [ee ℄ A ¯L= ¯ (0.332 ± 0.006)% ¯η 00 ¯ = (2.220 ± 0.011) × 10−3 (S = 1.8) ¯ ¯ ¯η +− ¯ = (2.232 ± 0.011) × 10−3 (S = 1.8) ¯ ¯ ¯ǫ¯ = (2.228 ± 0.011) × 10−3 (S = 1.8) ¯ ¯ ¯η 00 /η +− ¯ = 0.9950 ± 0.0007 [hh℄ (S = 1.6) Re(ǫ′/ǫ) = (1.66 ± 0.23) × 10−3 [hh℄ (S = 1.6) Assuming CPT φ+− = (43.51 ± 0.05)◦ (S = 1.2) φ00 = (43.52 ± 0.05)◦ (S = 1.3) φǫ =φSW = (43.52 ± 0.05)◦ (S = 1.2) ′ Im(ǫ /ǫ) = −(φ00 − φ+−)/3 = (− 0.002 ± 0.005)◦ (S = 1.7) Not assuming CPT φ+− = (43.4 ± 0.5)◦ (S = 1.2) φ00 = (43.7 ± 0.6)◦ (S = 1.2) φǫ = (43.5 ± 0.5)◦ (S = 1.3) CP asymmetry A in K 0L → π+ π− e + e − = (13.7 ± 1.5)% βCP from K 0L → e + e − e + e − = − 0.19 ± 0.07 γCP from K 0L → e + e − e + e − = 0.01 ± 0.11 (S = 1.6) j for K 0L → π+ π− π0 = 0.0012 ± 0.0008 f for K 0L → π+ π− π0 = 0.004 ± 0.006 ¯ ¯ ¯η +−γ ¯ = (2.35 ± 0.07) × 10−3 φ+−γ = (44 ± 4)◦ ¯ ¯ ′ ¯/ǫ < 0.3, CL = 90% ¯ǫ ¯ +−γ ¯ ¯gE 1 ¯ for K 0 → π + π − γ < 0.21, CL = 90% L T-violation parameters Im(ξ) in K 0µ3 = − 0.007 ± 0.026 CPT invarian e tests φ00 − φ+− = (0.34 ± 0.32)◦ Re( 32 η+− + 13 η00 )− A2L = (− 3 ± 35) × 10−6 S = −Q in K 0ℓ3 de ay Re x = − 0.002 ± 0.006 Im x = 0.0012 ± 0.0021 / / ¯ ¯ + 4 × −2 K 0e 3 ¯fT f+ ¯ −5 ¯ ¯ 0 ± × −2 K µ3 ¯fT f+ ¯ + + − − ± KL → ℓ ℓ γ KL → ℓ ℓ ℓ′+ ℓ′− αK ∗ − . . K 0L → ℓ+ ℓ− γ K 0L → ℓ+ ℓ− ℓ′+ ℓ′− αDIP − . ± . 2 KL → π+ π− e + e − a1 a2 − . ± . K 0L DECAY MODES π ± e ∓ νe Fra tion ( i / ) S ale fa tor/ p Con den e level (MeV/ ) Semileptoni modes [gg ℄ (40.55 ± 0.11 ) % S=1.7 229 π ± µ∓ νµ [gg ℄ (27.04 ± 0.07 ) % S=1.1 216 π0 π± e ∓ ν π± e ∓ ν e + e − [gg ℄ [gg ℄ ( 1.05 ± 0.11 ) × 10−7 ( 5.20 ± 0.11 ) × 10−5 ( 1.26 ± 0.04 ) × 10−5 Called K 0e 3 . Called K µ0 3 . ( π µ atom) ν 188 207 229 Hadroni modes, in luding Charge onjugation×Parity Violating (CPV) modes (19.52 ± 0.12 ) % S=1.6 139 3π0 π+ π− π0 π+ π− π0 π0 π ± e ∓ νe γ π ± µ∓ νµ γ CPV CPV [ii ℄ (12.54 ± 0.05 ) % ( 1.967 ± 0.010) × 10−3 ( 8.64 ± 0.06 ) × 10−4 Semileptoni modes with photons [z,gg,jj ℄ ( 3.79 ± 0.06 ) × 10−3 ( 5.65 ± 0.23 ) × 10−4 S=1.5 S=1.8 133 206 209 229 216 MesonSummaryTable 42 π0 π0 γ π+ π− γ π + π − γ (DE) π 0 2γ π0 γ e + e − Hadroni modes with photons or ℓ ℓ pairs < 2.43 × 10−7 [z,jj ℄ ( 4.15 ± 0.15 ) × 10−5 ( 2.84 ± 0.11 ) × 10−5 [jj ℄ ( 1.273 ± 0.033) × 10−6 ( 1.62 ± 0.17 ) × 10−8 CL=90% S=2.8 S=2.0 209 206 206 231 230 Other modes with photons or ℓ ℓ pairs 2γ 3γ e+ e− γ µ+ µ− γ e+ e− γ γ µ+ µ− γ γ ± 0.04 ) × 10−4 × 10−8 ± 0.4 ) × 10−6 ( 5.47 < 7.4 ( 9.4 ( 3.59 [jj ℄ ( 5.95 ± 0.11 ) × 10−7 ± 0.33 ) × 10−7 [jj ℄ +0.8 − 0. 6 ( 1.0 S=1.1 CL=90% S=2.0 S=1.3 249 249 249 225 249 ) × 10−8 K ∗ (1410) Mass m = 1414 ± 15 MeV (S = 1.3) Full width = 232 ± 21 MeV (S = 1.1) K K ∗ (1410) DECAY MODES K ∗ (892) π Kπ Kρ γK0 S1 e+ e− S1 π+ π− e + e − π0 π0 e + e − π 0 π 0 µ+ µ− µ+ µ− e + e − e+ e− e+ e− π 0 µ+ µ− π0 e + e − π0 ν ν π0 π0 ν ν e ± µ∓ e ± e ± µ∓ µ∓ π 0 µ± e ∓ π 0 π 0 µ± e ∓ S1 S1 S1 S1 S1 , [ ℄ , [ ℄ CP,S1 [ll ℄ CP S1 kk CP S1 kk S1 LF LF LF LF K ∗ (892) [gg ℄ [gg ℄ [gg ℄ ) × 10−9 ) × 10−12 225 ) × 10−7 × 10−9 × 10−11 ) × 10−9 ) × 10−8 × 10−10 × 10−10 × 10−8 × 10−7 × 10−12 × 10−11 × 10−11 × 10−10 206 209 57 225 249 177 230 231 209 238 225 217 159 249 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% I (J P ) = 21 (1− ) K ∗ (892)± K ∗ (892)± K ∗ (892)0 K ∗ (892)± K ∗ (892)± K ∗ (892)0 K [jj ℄ ( 6.84 ± 0.11 +6 ( 9 −4 ( 3.11 ± 0.19 < 6. 6 < 9. 2 ( 2.69 ± 0.27 ( 3.56 ± 0.21 < 3. 8 < 2. 8 < 2.6 < 8.1 < 4.7 < 4.12 < 7.6 < 1. 7 hadroprodu ed mass m = 891.66 ± 0.26 MeV in τ de ays mass m = 895.5 ± 0.8 MeV mass m = 895.81 ± 0.19 MeV (S = 1.4) hadroprodu ed full width = 50.8 ± 0.9 MeV in τ de ays full width = 46.2 ± 1.3 MeV full width = 47.4 ± 0.6 MeV (S = 2.2) ∗ (892) DECAY MODES Kπ K0γ K±γ K ππ ∼ 100 K ( 2.46 ± 0.21) × 10−3 ( 9.9 ± 0.9 ) × 10−4 < 7 × 10−4 95% Fra tion ( i / ) (42 ± 6 ) % (28 ± 4 ) % (16 ± 5 ) % (11.0 ± 2.0) % ( 3.0 ± 2.0) % seen 1 (1400) DECAY MODES K K ∗ (892) π Kρ K f0 (1370) Kω K ∗0 (1430) π γK0 0 K ∗2 (1430)± K ∗2 (1430)0 K ∗2 (1430)± K ∗2 (1430)0 K ∗ (1430) DECAY MODES 2 Kπ K ∗ (892) π K ∗ (892) π π Kρ Kω K+γ ∗ (1680) DECAY MODES Fra tion ( i / ) † † (94 ± 6 ) % ( 3.0 ± 3.0) % ( 2.0 ± 2.0) % ( 1.0 ± 1.0) % not seen seen 402 293 † 284 † 613 oo ℄ 2 (1770) DECAY MODES K K ππ K ∗2 (1430) π K ∗ (892) π K f2 (1270) Kφ Kω (MeV/ ) mass m = 1425.6 ± 1.5 MeV (S = 1.1) mass m = 1432.4 ± 1.3 MeV full width = 98.5 ± 2.7 MeV (S = 1.1) full width = 109 ± 5 MeV (S = 1.9) Fra tion ( i / ) S ale fa tor/ p Con den e level (MeV/ ) S=1.2 S=1.1 619 419 372 318 311 627 S=1.3 486 CL=95% CL=90% 100 626 Fra tion ( i / ) p (MeV/ ) 781 571 618 I (J P ) = 21 (2− ) Mass m = 1773 ± 8 MeV Full width = 186 ± 14 MeV 302 p (MeV/ ) 619 (38.7 ± 2.5) % +5.0 ) % (31.4 − 2.1 +2.2 ) % (29.9 − 5.0 K2 (1770) [ 46 (S = 1.6) p Mass m = 1717 ± 27 MeV (S = 1.4) Full width = 322 ± 110 MeV (S = 4.2) (MeV/ ) I (J P ) = 21 (1+ ) Fra tion ( i / ) I (J P ) = 21 (1− ) Kρ † I (J P ) = 21 (0+ ) (49.9 ± 1.2) % (24.7 ± 1.5) % (13.4 ± 2.2) % ( 8.7 ± 0.8) % ( 2.9 ± 0.8) % ( 2.4 ± 0.5) × 10−3 .4 −3 ( 1.5 +3 − 1.0 ) × 10 − < 7. 2 × 10 4 < 9 × 10−4 K ∗ (1680) 289 307 309 223 539 95% 410 612 305 619 I (J P ) = 21 (2+ ) Kπ p 95% (93 ± 10) % K ∗ (892) π Kρ K ∗0 (1430) π K ∗ (892) π Kω K f0 (1370) γK0 Mass m = 1403 ± 7 MeV Full width = 174 ± 13 MeV ∗ (1430) DECAY MODES 0 K ωπ K0γ I (J P ) = 21 (1+ ) K K1 (1400) ℄ Kη Mass m = 1272 ± 7 MeV [l ℄ Full width = 90 ± 20 MeV [l ℄ 1 (1270) DECAY MODES nn K ∗2 (1430) K K K1 (1270) % ( 6.6 ± 1.3) % < 7 % seen Kπ Con den e level (MeV/ ) % Con den e level (MeV/ ) Mass m = 1425 ± 50 MeV Full width = 270 ± 80 MeV p Fra tion ( i / ) p Fra tion ( i / ) > 40 K ∗0 (1430) [ 225 Charge onjugation × Parity (CP ) or Lepton Family number (LF ) violating modes, or S = 1 weak neutral urrent (S1 ) modes µ+ µ− I (J P ) = 21 (1− ) K ∗3 (1780) Fra tion ( i / ) dominant seen seen seen seen I (J P ) = 21 (3− ) Mass m = 1776 ± 7 MeV (S = 1.1) Full width = 159 ± 21 MeV (S = 1.3) p (MeV/ ) 794 288 654 55 441 607 MesonSummaryTable 43 K ∗3 (1780) DECAY MODES Fra tion ( i / ) Kρ K ∗ (892) π Kπ Kη K ∗2 (1430) π p T-violation de ay-rate asymmetry AT (K 0S K ± π+ π− ) = (− 12 ± 11) × 10−3 [rr ℄ D + form ¯fa tors ¯ f+ (0)¯Vcs ¯ in K 0 ℓ+ νℓ = 0.707 ± 0.013 r1 ≡ a1 /a0 in K 0 ℓ+ νℓ = − 1.7 ± 0.5 r2 ≡ a¯2 /a0¯ in K 0 ℓ+ νℓ = − 14 ± 11 f+ (0)¯Vcd ¯ in π0 ℓ+ νℓ = 0.146 ± 0.007 r1 ≡ a1 /a0 in π0 ℓ+ νℓ = − 1.4 ± 0.9 r2 ≡ a¯2 /a0¯ in π0 ℓ+ νℓ = − 4 ± 5 f+ (0)¯Vcd ¯ in D + → η e + νe = 0.086 ± 0.006 r1 ≡ a1 /a0 in D + → η e + νe = − 1.8 ± 2.2 rv ≡ V(0)/A1 (0) in D + ,D 0 → ρ e + νe = 1.48 ± 0.16 r2 ≡ A2 (0)/A1 (0) in D + ,D 0 → ρ e + νe = 0.83 ± 0.12 rv ≡ V(0)/A1 (0) in K ∗ (892)0 ℓ+ νℓ = 1.51 ± 0.07 (S = 2.2) r2 ≡ A2 (0)/A1 (0) in K ∗ (892)0 ℓ+ νℓ = 0.807 ± 0.025 r3 ≡ A3 (0)/A1 (0) in K ∗ (892)0 ℓ+ νℓ = 0.0 ± 0.4 ∗ 0 + L / T in K (892) ℓ νℓ = 1.13 ± 0.08 ∗ (892)0 ℓ+ ν = 0.22 ± 0.06 (S = 1.6) / in K + − ℓ Con den e level (MeV/ ) (31 ± 9 ) % (20 ± 5 ) % (18.8 ± 1.0) % (30 ± 13 ) % < 16 % 95% 613 656 813 719 291 I (J P ) = 21 (2− ) K2 (1820) [pp℄ Mass m = 1816 ± 13 MeV Full width = 276 ± 35 MeV K2 (1820) DECAY MODES Fra tion ( i / ) K ∗2 (1430) π K ∗ (892) π K f2 (1270) Kω p (MeV/ ) seen seen seen seen 327 681 186 638 I (J P ) = 21 (4+) K ∗4 (2045) Most de ay modes (other than the semileptoni modes) that involve a neutral K meson are now given as K 0S modes, not as K 0 modes. Nearly always it is a K 0S that is measured, and interferen e between Cabibbo-allowed and doubly Cabibbo-suppressed modes an invalidate the assumption that 2 (K 0S ) = (K 0 ). Mass m = 2045 ± 9 MeV (S = 1.1) Full width = 198 ± 30 MeV K ∗4 (2045) DECAY MODES Fra tion ( i / ) Kπ K ∗ (892) π π K ∗ (892) π π π ρK π ωK π φK π φ K ∗ (892) p (MeV/ ) (9.9 ± 1.2) % (9 ± 5 ) % (7 ± 5 ) % (5.7 ± 3.2) % (5.0 ± 3.0) % (2.8 ± 1.4) % (1.4 ± 0.7) % 958 802 768 741 738 594 363 CHARMED MESONS ( = ± 1) D + = d , D 0 = u , D 0 = u, D − = d, similarly for D ∗ 's C D± I (J P ) = 21 (0− ) Mass m = 1869.61 ± 0.10 MeV (S = 1.1) Mean life τ = (1040 ± 7) × 10−15 s τ = 311.8 µm -quark de ays ( → ℓ+ anything)/ ( → anything) = 0.096 ± 0.004 [qq ℄ ( → D ∗ (2010)+ anything)/ ( → anything) = 0.255 ± 0.017 CP-violation de ay-rate asymmetries ACP (µ± ν ) = (8 ± 8)% ACP (K 0S π± ) = (− 0.41 ± 0.09)% ACP (K ∓ 2π± ) = (− 0.1 ± 1.0)% ACP (K ∓ π± π± π0 ) = (1.0 ± 1.3)% ACP (K 0S π± π0 ) = (0.3 ± 0.9)% ACP (K 0S π± π+ π− ) = (0.1 ± 1.3)% ACP (π± π0 ) = (2.9 ± 2.9)% ACP (π± η) = (1.0 ± 1.5)% (S = 1.4) ACP (π± η′ (958)) = (− 0.5 ± 1.2)% (S = 1.1) ACP (K 0S K ± ) = (− 0.11 ± 0.25)% ACP (K + K − π± ) = (0.36 ± 0.29)% ACP (K ± K ∗0 ) = (− 0.3 ± 0.4)% ACP (φπ± ) = (0.09 ± 0.19)% (S = 1.2) ACP (K ± K ∗0 (1430)0 ) = (8 +− 67 )% 20 )% ACP (K ± K ∗2 (1430)0 ) = (43 −+ 26 18 )% ACP (K ± K ∗0 (800)) = (− 12 −+ 13 14 )% ACP (a0 (1450)0 π± ) = (− 19 −+ 16 ± ACP (φ(1680) π ) = (− 9 ± 26)% ACP (π+ π− π± ) = (− 2 ± 4)% ACP (K 0S K ± π+ π− ) = (− 4 ± 7)% ACP (K ± π0 ) = (− 4 ± 11)% D + DECAY MODES S ale fa tor/ p Con den e level (MeV/ ) Fra tion ( i / ) In lusive modes e + semileptoni µ+ anything K K 0 anything + K 0 anything K + anything K ∗ (892)− anything K ∗ (892)0 anything K ∗ (892)0 anything − anything η anything η ′ anything φ anything (16.07 ± 0.30) % (17.6 ± 3.2 ) % (25.7 ± 1.4 ) % (61 ± 5 ) % ( 5.9 ± 0.8 ) % ( 6 ±5 ) % (23 ± 5 ) % < 6. 6 % ( 6.3 ± 0.7 ) % ( 1.04 ± 0.18) % ( 1.03 ± 0.12) % CL=90% { { { { { { { { { { { Leptoni and semileptoni modes e + νe × 10−6 ( 3.82 ± 0.33) × 10−4 < 1. 2 × 10−3 ( 8.83 ± 0.22) % ( 9.2 ± 0.6 ) % ( 4.00 ± 0.10) % ( 3.68 ± 0.10) % < 8. 8 µ+ νµ τ + ντ K 0 e + νe K 0 µ+ νµ K − π+ e + νe K ∗ (892)0 e + νe , K ∗ (892)0 → K − π+ (K − π+ )S −wave e + νe K ∗ (1410)0 e + νe , K ∗ (1410)0 → K − π+ K ∗2 (1430)0 e + νe , K ∗2 (1430)0 → K − π+ K − π+ e + νe nonresonant K − π+ µ+ νµ K ∗ (892)0 µ+ νµ , K ∗ (892)0 → K − π+ K − π+ µ+ νµ nonresonant K − π+ π0 µ+ νµ π 0 e + νe η e + νe ρ0 e + νe ρ0 µ+ νµ ω e+ ν e η ′ (958) e + νe + φ e νe CL=90% CL=90% ( 2.32 ± 0.10) × 10−3 × 10−3 CL=90% { { < 5 × 10−4 CL=90% { < 7 × 10−3 CL=90% 864 851 717 < 6 ( 3.8 ± 0.4 ) % ( 3.52 ± 0.10) % ( 2.0 ± 0.5 ) × 10−3 × 10−3 ( 4.05 ± 0.18) × 10−3 ( 1.14 ± 0.10) × 10−3 < 1. 6 .17 −3 ( 2.18 +0 − 0.25 ) × 10 − ( 2.4 ± 0.4 ) × 10 3 ( 1.82 ± 0.19) × 10−3 ( 2.2 ± 0.5 ) × 10−4 < 9 × 10−5 CL=90% 851 825 930 855 774 CL=90% Fra tions of some of the following modes with resonan es have already appeared above as submodes of parti ular harged-parti le modes. ( 5.52 ± 0.15) % K ∗ (892)0 e + νe K ∗ (892)0 µ+ νµ ( 5.28 ± 0.15) % K ∗0 (1430)0 µ+ νµ < 2. 4 × 10−4 CL=90% CL=90% K ∗ (1680)0 µ+ ν < 1. 5 × 10−3 µ 935 932 90 869 865 864 722 770 771 689 657 722 717 380 105 44 MesonSummaryTable Hadroni modes with a K or K K K K 0S π + K 0L π + K − 2π + (K − π+ )S −wave π+ K ∗0 (1430)0 π + , K ∗0 (1430)0 → K − π + K ∗ (892)0 π + , K ∗ (892)0 → K − π + K ∗ (1410)0 π + , K ∗0 → K − π+ K ∗2 (1430)0 π + , K ∗2 (1430)0 → K − π + K ∗ (1680)0 π + , K ∗ (1680)0 → K − π + K − (2π + )I =2 K 0S π + π 0 K 0S ρ+ K ∗ (892)0 π + , K ∗ (892)0 → K 0S π 0 K 0S π + π 0 nonresonant K − 2π + π 0 K 0S 2π + π − K − 3π + π − K ∗ (892)0 2π + π − , K ∗ (892)0 → K − π + K ∗ (892)0 ρ0 π + , K ∗ (892)0 → K − π + K ∗ (892)0 a1 (1260)+ K − ρ0 2π + K − 3π + π − nonresonant K + 2K 0S K + K − K 0S π + π+ π0 2π+ π− ρ0 π + π + (π + π − )S −wave σ π+ , σ → π+ π− f0 (980) π + , f0 (980) → π + π − f0 (1370) π + , f0 (1370) → π + π − f2 (1270) π + , f2 (1270) → π + π − ρ(1450)0 π + , ρ(1450)0 → π + π − f0 (1500) π + , f0 (1500) → π + π − f0 (1710) π + , f0 (1710) → π + π − f0 (1790) π + , f0 (1790) → π + π − (π+ π+ )S −wave π− 2π+ π− nonresonant π + 2π 0 2π+ π− π0 η π+ , η → π+ π− π0 ω π+ , ω → π+ π− π0 3π+ 2π− [ss ℄ [tt ℄ ( ( ( ( ( 1.47 ± 0.07) % 1.46 ± 0.05) % 9.13 ± 0.19) % 7.32 ± 0.19) % 1.21 ± 0.06) % S=2.0 ( 1.01 ± 0.11) % 714 not seen 381 [tt ℄ ( 2.2 ± 0.7 ) × 10−4 371 [tt ℄ ( 2.1 ± 1.1 ) × 10−4 58 [ss ℄ [uu ℄ [uu ℄ [ss ℄ [vv ℄ ( ( ( ( ( ( ( ( ( { 1.41 ± 0.26) % 6.99 ± 0.27) % 4.8 ± 1.0 ) % 1. 3 ± 0 . 6 ) % 9 ± 7 ) × 10−3 5.99 ± 0.18) % 3.12 ± 0.11) % 5.6 ± 0.5 ) × 10−3 1.2 ± 0.4 ) × 10−3 845 677 714 S=1.1 845 816 814 772 645 ( 2.2 ± 0.4 ) × 10−3 239 9.0 ± 1.8 ) × 10−3 1.68 ± 0.27) × 10−3 3.9 ± 2.9 ) × 10−4 4.5 ± 2.0 ) × 10−3 2.4 ± 0.6 ) × 10−4 524 772 545 436 ( ( ( ( ( † Pioni modes 1.19 ± 0.06) × 10−3 3.18 ± 0.18) × 10−3 8.1 ± 1.5 ) × 10−4 1.78 ± 0.16) × 10−3 1.34 ± 0.12) × 10−3 1.52 ± 0.33) × 10−4 925 909 767 909 ) × 10−5 { ( 4.9 ± 0.9 ) × 10−4 485 ( ( ( ( ( ( ( 8 < 8 ±4 × 10−5 { 669 CL=95% ( 1.1 ± 0.4 ) × 10−4 338 { < 5 × 10−5 CL=95% { < 6 × 10−5 CL=95% { < 1.2 × 10−4 CL=95% CL=95% 909 909 910 883 848 763 845 < 1.1 × 10−4 ( 4.6 ± 0.4 ) × 10−3 ( 1.13 ± 0.08) % ( 8.0 ± 0.5 ) × 10−4 < 3 × 10−4 ( 1.61 ± 0.16) × 10−3 CL=90% Fra tions of some of the following modes with resonan es have already appeared above as submodes of parti ular harged-parti le modes. ( 3.53 ± 0.21) × 10−3 η π+ ( 1.38 ± 0.35) × 10−3 η π+ π0 CL=90% ω π+ < 3.4 × 10−4 η ′ (958) π + ( 4.67 ± 0.29) × 10−3 η ′ (958) π + π 0 ( 1.6 ± 0.5 ) × 10−3 K + K 0S K + K − π+ 863 863 846 846 382 848 830 764 681 654 Hadroni modes with a K K pair φπ+ , φ → K + K − K + K ∗ (892)0 , K ∗ (892)0 → K − π + [ss ℄ ( 2.83 ± 0.16) × 10−3 ( 9.54 ± 0.26) × 10−3 .08 −3 ( 2.65 +0 − 0.09 ) × 10 .09 −3 ( 2.45 +0 − 0.14 ) × 10 S=2.2 S=1.1 793 744 647 613 K + K ∗0 (1430)0 , K ∗0 (1430)0 → K − π + K + K ∗2 (1430)0 , K ∗2 → K − π+ + K K ∗0 (800), K ∗0 → K − π + a0 (1450)0 π + , a00 → K+K− φ(1680) π+ , φ → K + K − { .2 −4 ( 1.6 +1 − 0.8 ) × 10 { .4 −4 ( 6.7 +3 − 2.1 ) × 10 +7 . 0 ( 4.4 − 1.8 ) × 10−4 { { .0 −5 ( 4.9 +4 − 1.9 ) × 10 not seen ( 1.75 ± 0.18) × 10−3 ( 2.40 ± 0.18) × 10−3 ( 2.2 ± 1.2 ) × 10−4 K + K − π + nonresonant K + K 0S π + π − K 0S K − 2π + K + K − 2π + π − φπ+ π 0 φρ+ ( 1.79 ± 0.34) × 10−3 { 744 678 678 600 A few poorly measured bran hing fra tions: ( 2.3 ± 1.0 ) % % +0.7 ) % ( 1.5 − 0. 6 ( 1.6 ± 0.7 ) % < 1. 5 K + K − π + π 0 non-φ K ∗ (892)+ K 0S CL=90% 619 260 682 612 Doubly Cabibbo-suppressed modes K + π0 K+η K + η ′ (958) K + π+ π− K + ρ0 K ∗ (892)0 π + , K ∗ (892)0 → K + π− K + f0 (980), f0 (980) → π+ π− K ∗2 (1430)0 π + , K ∗2 (1430)0 → K + π− K + π + π − nonresonant 2K + K − ( ( ( ( ( ( 1.83 ± 0.26) × 10−4 1.08 ± 0.17) × 10−4 1.76 ± 0.22) × 10−4 5.27 ± 0.23) × 10−4 2.0 ± 0.5 ) × 10−4 2.5 ± 0.4 ) × 10−4 S=1.4 864 776 571 846 679 714 ( 4.7 ± 2.8 ) × 10−5 { ( 4.2 ± 2.9 ) × 10−5 { not seen ( 8.7 ± 2.0 ) × 10−5 846 550 C = 1 weak neutral urrent (C1 ) modes, or Lepton Family number (LF ) or Lepton number (L) violating modes π+ e + e − [xx ℄ C1 ( < [xx ℄ C1 ( < [yy ℄ < [yy ℄ < LF LF LF LF L L L L L L L L D0 × 10−6 . 4 +1 1.7 − 0.9 ) × 10−6 7. 3 × 10−8 1.8 ± 0.8 ) × 10−6 5. 6 × 10−4 1. 0 × 10−6 4. 3 × 10−6 2. 9 × 10−6 3. 6 × 10−6 1. 2 × 10−6 2. 8 × 10−6 1. 1 × 10−6 2. 2 × 10−8 2. 0 × 10−6 5. 6 × 10−4 9 × 10−7 1. 0 × 10−5 1. 9 × 10−6 8. 5 × 10−4 < 1. 1 C1 π+ φ , φ → e + e − π + µ+ µ− π + φ, φ → µ+ µ− ρ+ µ+ µ− K + e+ e− K + µ+ µ− π + e + µ− π + e − µ+ K + e + µ− K + e − µ+ π − 2e + π − 2µ+ π − e + µ+ ρ− 2µ+ K − 2e + K − 2µ+ K − e + µ+ K ∗ (892)− 2µ+ < < < < < < < < < < < < CL=90% 930 CL=90% 918 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% 757 870 856 927 927 866 866 930 918 927 757 870 856 866 703 { I (J P ) = 21 (0− ) Mass m = 1864.84 ± 0.07 MeV (S = 1.1) m D ± − m D 0 = 4.77 ± 0.08 MeV Mean life τ = (410.1 ± 1.5) × 10−15 s τ = 122.¯9 µm ¯ ¯m 0 − m 0 ¯ = (0.95 + 0.41 ) × 1010 h s− 1 − 0.44 D D 1 2 + 0.14 ) × 10−2 ( D 0 { D 0 )/ = 2y = (1.29 − 0.18 2 ¯ 1¯ . 12 + 0 ¯q/p¯ = 0.92 − 0.09 A = (− 0.125 ± 0.526) × 10−3 + 0.23 + − K π relative strong phase: os δ = 0.81 − 0.19 11 + − + 0 K π π oheren e fa tor RK π π 0 = 0.78 − 00..25 32 ◦ K − π + π 0 average relative strong phase δ K π π = (239 + − 28 ) + 0.24 K − π − 2π + oheren e fa tor RK 3π = 0.36 − 0.30 60 ◦ K − π − 2π + average relative strong phase δ K 3π = (118 + − 50 ) 0 + − KS K π oheren e fa tor RK 0 K π = 0.73 ± 0.08 0 S { 45 MesonSummaryTable K 0S K + π− average relative strong phase δK S K π = (8 ± 15)◦ K ∗ K oheren e fa tor RK ∗ K = 1.00 ± 0.16 K ∗ K average relative strong phase δK ∗ K = (26 ± 16)◦ CP-violation de ay-rate asymmetries (labeled by the D 0 de ay) ACP (K + K − ) = (− 0.21 ± 0.17)% ACP (2K 0S ) = (− 23 ± 19)% ACP (π+ π− ) = (0.22 ± 0.21)% ACP (2π0 ) = (0 ± 5)% ACP (π+ π− π0 ) = (0.3 ± 0.4)% ACP (ρ(770)+ π− → π+ π− π0 ) = (1.2 ± 0.9)% [zz ℄ ACP (ρ(770)0 π0 → π+ π− π0 ) = (− 3.1 ± 3.0)% [zz ℄ ACP (ρ(770)− π+ → π+ π− π0 ) = (− 1.0 ± 1.7)% [zz ℄ ACP (ρ(1450)+ π− → π+ π− π0 ) = (0 ± 70)% [zz ℄ ACP (ρ(1450)0 π0 → π+ π− π0 ) = (− 20 ± 40)% [zz ℄ ACP (ρ(1450)− π+ → π+ π− π0 ) = (6 ± 9)% [zz ℄ ACP (ρ(1700)+ π− → π+ π− π0 ) = (− 5 ± 14)% [zz ℄ ACP (ρ(1700)0 π0 → π+ π− π0 ) = (13 ± 9)% [zz ℄ ACP (ρ(1700)− π+ → π+ π− π0 ) = (8 ± 11)% [zz ℄ ACP (f0 (980) π0 → π+ π− π0 ) = (0 ± 35)% [zz ℄ ACP (f0 (1370) π0 → π+ π− π0 ) = (25 ± 18)% [zz ℄ ACP (f0 (1500) π0 → π+ π− π0 ) = (0 ± 18)% [zz ℄ ACP (f0 (1710) π0 → π+ π− π0 ) = (0 ± 24)% [zz ℄ ACP (f2 (1270) π0 → π+ π− π0 ) = (− 4 ± 6)% [zz ℄ ACP (σ(400) π0 → π+ π− π0 ) = (6 ± 8)% [zz ℄ ACP (nonresonant π+ π− π0 ) = (− 13 ± 23)% [zz ℄ ACP (2π+ 2π− ) ACP (K + K − π0 ) = (− 1.0 ± 1.7)% ACP (K ∗ (892)+ K − → K + K − π0 ) = (− 0.9 ± 1.3)% [zz ℄ ACP (K ∗ (1410)+ K − → K + K − π0 ) = (− 21 ± 24)% [zz ℄ ACP ((K + π0 )S −wave K − → K + K − π0 ) = (7 ± 15)% [zz ℄ ACP (φ(1020) π0 → K + K − π0 ) = (1.1 ± 2.2)% [zz ℄ ACP (f0 (980) π0 → K + K − π0 ) = (− 3 ± 19)% [zz ℄ ACP (a0 (980)0 π0 → K + K − π0 ) = (− 5 ± 16)% [zz ℄ ACP (f ′2 (1525) π0 → K + K − π0 ) = (0 ± 160)% [zz ℄ ACP (K ∗ (892)− K + → K + K − π0 ) = (− 5 ± 4)% [zz ℄ ACP (K ∗ (1410)− K + → K + K − π0 ) = (− 17 ± 29)% [zz ℄ ACP (( K − π0 )S −wave K + → K + K − π0 ) = (− 10 ± 40)% [zz ℄ ACP (K 0S π0 ) = (− 0.27 ± 0.21)% ACP (K 0S η) = (0.5 ± 0.5)% ACP (K 0S η′ ) = (1.0 ± 0.7)% ACP (K 0S φ) = (− 3 ± 9)% ACP (K − π+ ) = (0.1 ± 0.7)% ACP (K + π− ) = (0.0 ± 1.6)% ACP (K − π+ π0 ) = (0.2 ± 0.9)% ACP (K + π− π0 ) = (0 ± 5)% ACP (K 0S π+ π− ) = (− 0.1 ± 0.8)% ACP (K ∗ (892)− π+ → K 0S π+ π− ) = (0.4 ± 0.5)% ACP (K ∗ (892)+ π− → K 0S π+ π− ) = (1 ± 6)% ACP (K 0 ρ0 → K 0S π+ π− ) = (− 0.1 ± 0.5)% ACP (K 0 ω → K 0S π+ π− ) = (− 13 ± 7)% ACP (K 0 f0 (980) → K 0S π+ π− ) = (− 0.4 ± 2.7)% ACP (K 0 f2 (1270) → K 0S π+ π− ) = (− 4 ± 5)% ACP (K 0 f0 (1370) → K 0S π+ π− ) = (− 1 ± 9)% ACP (K 0 ρ0 (1450) → K 0S π+ π− ) = (− 4 ± 10)% ACP (K 0 f0 (600) → K 0S π+ π− ) = (− 3 ± 5)% ACP (K ∗ (1410)− π+ → K 0S π+ π− ) = (− 2 ± 9)% ACP (K ∗0 (1430)− π+ → K 0S π+ π− ) = (4 ± 4)% ACP (K ∗0 (1430)+ π− → K 0S π+ π− ) = (12 ± 15)% ACP (K ∗2 (1430)− π+ → K 0S π+ π− ) = (3 ± 6)% ACP (K ∗2 (1430)+ π− → K 0S π+ π− ) = (− 10 ± 32)% ACP (K ∗ (1680)− π+ → K 0S π+ π− ) ACP (K − π+ π+ π− ) = (0.7 ± 1.0)% ACP (K + π− π+ π− ) = (− 2 ± 4)% ACP (K + K − π+ π− ) = (− 8 ± 7)% ACP (K ∗1 (1270)+ K − → K ∗0 π+ K − ) = (− 1 ± 10)% ACP (K ∗1 (1270)− K + → K ∗0 π− K + ) = (− 10 ± 32)% ACP (K ∗1 (1270)+ K − → ρ0 K + K −) = (− 7 ± 17)% ACP (K ∗1 (1270)− K + → ρ0 K − K +) = (10 ± 13)% ACP (K ∗ (1410)+ K − → K ∗0 π+ K − ) = (− 20 ± 17)% ACP (K ∗ (1410)− K + → K ∗0 π− K + ) = (− 1 ± 14)% ACP (K ∗0 K ∗0 S-wave) = (10 ± 14)% ACP (φρ0 S-wave) = (− 3 ± 5)% ACP (φρ0 D-wave) = (− 37 ± 19)% ACP (φ ( π+ π− )S −wave ) = (− 9 ± 10)% ACP ((K − π+ )P −wave (K + π− )S −wave ) = (3 ± 11)% 0 CP-violation asymmetry di eren e ACP = ACP (K + K −) − ACP (π+ π− ) = (− 0.46 ± 0.25)% (S = 1.8) T-violation de ay-rate asymmetry AT (K + K − π+ π− ) = (1 ± 7) × 10−3 [rr ℄ CPT-violation de ay-rate asymmetry ACPT (K ∓ π± ) = 0.008 ± 0.008 Form fa tors rV ≡ V(0)/A1 (0) in D 0 → K ∗(892)− ℓ+ νℓ = 1.7 ± 0.8 r2 ≡ A2 (0)/A1(0) in D 0 → K ∗(892)− ℓ+ νℓ = 0.9 ± 0.4 f+ (0)¯in D¯ 0 → K − ℓ+ νℓ = 0.727 ± 0.011 f+ (0)¯Vcs ¯ in D 0 → K − ℓ+ νℓ = 0.726 ± 0.009 r1 ≡ a1 /a0 in D 0 → K − ℓ+ νℓ = − 2.65 ± 0.35 r2 ≡ a¯1 /a0¯ in D 0 → K − ℓ+ νℓ = 13 ± 9 f+ (0)¯Vcd ¯ in D 0 → π− ℓ+ νℓ = 0.152 ± 0.005 r1 ≡ a1 /a0 in D 0 → π− ℓ+ νℓ = − 2.8 ± 0.5 r2 ≡ a1 /a0 in D 0 → π− ℓ+ νℓ = 6 ± 3.0 Most de ay modes (other than the semileptoni modes) that involve a neutral K meson are now given as K 0S modes, not as K 0 modes. Nearly always it is a K 0S that is measured, and interferen e between Cabibbo-allowed and doubly Cabibbo-suppressed modes an invalidate the assumption that 2 (K 0S ) = (K 0 ). D 0 DECAY MODES Topologi al modes 0-prongs 2-prongs 4-prongs 6-prongs [aaa℄ [bbb℄ [ ℄ (15 (70 (14.5 ( 6. 4 { { { { ± 6 )% )% )% ± 1.3 ) × 10−4 ± 6 ± 0.5 In lusive modes e + anything anything K anything K 0 anything + K 0 anything K + anything K ∗ (892)− anything K ∗ (892)0 anything K ∗ (892)+ anything K ∗ (892)0 anything η anything η ′ anything φ anything µ+ [ddd ℄ − K − e + νe K − µ+ νµ K ∗ (892)− e + νe K ∗ (892)− µ+ νµ K − π0 e + νe K 0 π− e + νe K − π+ π− e + νe K1 (1270)− e + νe K − π+ π− µ+ νµ ( K ∗ (892) π )− µ+ νµ π − e + νe π − µ+ νµ ρ− e + νe S ale fa tor/ p Con den e level(MeV/ ) Fra tion ( i / ) ( 6.49 ( 6. 7 (54.7 (47 ( 3.4 (15 ( 9 < 3. 6 ( 2. 8 ( 9.5 ( 2.48 ( 1.05 ± 0.11 ) % ± 0.6 ± 2.8 ± 4 ± 0.4 ± 9 ± 4 ± 1.3 ± 0.9 ± 0.27 ± 0.11 Semileptoni modes ( ( ( ( 3.55 3.31 2.16 1.91 ( 1.6 )% )% )% )% )% )% % )% )% )% )% ± 0.05 ) % S=1.3 CL=90% S=1.2 ± 0.24 ) % 867 864 719 714 + 1. 3 − 0.5 861 ± 0.13 ) % ± 0.16 ) % )% + 0. 9 − 0.7 ) % + 1.4 ) × 10−4 ( 2. 8 − 1.1 + 4.0 ) × 10−4 ( 7. 6 − 3.1 < 1. 2 × 10−3 < 1. 4 × 10−3 ( 2.89 ± 0.08 ) × 10−3 ( 2.37 ± 0.24 ) × 10−3 ( 1.77 ± 0.16 ) × 10−3 860 ( 2.7 Hadroni modes with one K K − π+ K + π− K 0S π0 K 0L π0 K 0S π+ π− K 0S ρ0 K 0S ω , ω → π+ π− K 0S (π+ π− )S −wave K 0S f0 (980), f0 (980) → π+ π− [ss ℄ ( 3.88 ± ( 1.380 ± ( 1.19 ± (10.0 ± ( 2.83 ± ( 6. 3 + ( 2. 1 ( 3. 4 { { { { { { { { { { { { 0.05 ) % 0.028) × 10−4 0.04 ) % 0.7 ) × 10−3 0.20 ) % 0. 7 −3 − 0.8 ) × 10 ± 0.6 ) × 10−4 ± 0.8 ) × 10−3 + 0.40 ) × 10−3 ( 1.22 − 0.24 843 498 CL=90% CL=90% S=1.1 821 692 927 924 771 S=1.1 861 861 860 860 842 S=1.1 674 670 842 549 46 MesonSummaryTable K 0S f0 ( 2.8 → π+ π− f0 K 0S f2 (9 → π+ π− f2 − π+ K∗ ( 1.66 − → K 0 π− K∗ S − π+ K ∗0 ( 2.70 − → K 0 π− K ∗0 S − π+ ( 3.4 K ∗2 ∗ − → K 0 π− K2 S − π+ K∗ (4 − → K 0 π− K∗ S + π− K∗ [eee ℄ ( 1.14 + → K 0S π+ K∗ + π− [eee ℄ < 1.4 K ∗0 + → K 0 π+ K ∗0 S + π− [eee ℄ < 3.4 K ∗2 + → K 0 π+ K ∗2 S ( 2.5 K 0S π+ π− K − π+ π0 [ss ℄ (13.9 (10.8 K − ρ+ + ( 7.9 K−ρ + → π+ π0 ρ − π+ K∗ ( 2.22 − → K − π0 K∗ 0 ∗ 0 K π ( 1.88 0 → K − π+ K∗ − π+ K ∗0 ( 4. 6 − → K − π0 K ∗0 0 π0 ( 5.7 K ∗0 ∗ 0 → K − π+ K0 − π+ K∗ ( 1. 8 − → K − π0 K∗ K − π+ π0 ( 1.11 0 K S π0 ( 9.1 ( 2.6 K 0S π0 S 0 π0 K∗ ( 7. 8 0 → K 0 π0 K∗ 0 π0 K ∗S0 → K∗ (4 K 0S π0 0 π 0 K ∗0 → K∗ ( 1.0 K 0S π0 K 0S f2 f2 → π0 ( 2. 3 K 0S K 0S → π0 ( 3.2 [ss ℄ ( 8.08 K − π+ π− K − π + ρ0 ( 6.75 ( 5.1 K − π + ρ0 0 ρ0 ( 1.05 K∗ 0 → K − π+ K∗ + K − a1 ( 3.6 + → π+ π− a1 ∗ + 0 − ( 1. 6 K π π 0 → K − π+ K∗ 0 π+ π− ( 9. 9 K∗ 0 → K − π+ K∗ − + π K1 [ f ℄ ( 2.9 − → K − π+ π− K1 K − π+ π− ( 1.88 [ggg ℄ ( 5.2 K 0S π+ π− π0 ( 1.02 K 0S η η → π+ π− π0 K 0S ω ω → π+ π− π0 ( 9.9 ( 4.2 K − π+ π− π0 0 π+ π− π0 ( 1. 3 K∗ ∗ − + 0 K → K π ( 2. 7 K − π+ ω ω → π+ π− π0 0ω K∗ ( 6.5 0 → K − π+ K∗ − + 0 ω→ π π π K 0S η π0 ( 5.5 0 ( 6.5 → η π0 K S a0 a0 (1370) , (1370) (1270) , (1270) , (892) (892) (1430) , (1430) , (1430) (1430) , (1680) (1680) (892) , (892) (1430) , + 0.9 ) × 10−3 1.3 +10 − 6 nonresonant (1700) , (1700) (892) , (892) (892) , + 0.15 ) % 0.17 + 0.40 −3 − 0.34 ) × 10 , (1430) , (1430) (1430) , (1680) (1680) nonresonant 2 )- (2 -wave , (892) 2 × + 6.0 1.6 0.5 ± 0.7 ± 1.7 − ± 3-body , (1260) , total, 3-body, , nonresonant 813 813 772 670 771 643 0.5 ) % 3.0 ) × 10−3 605 410 1.1 ) × 10−3 2.0 ) × 10−3 721 (892) (892) ± ± 484 , (892) (980) , S=1.3 813 609 609 416 0.26 ) % 0. 6 ) % 0.09 ) × 10−3 0.5 ) × 10−3 0.4 ) % 0.6 ) % ± ± ± , { 685 ± (980) ± ± (892) (892) 2 , (892) (892) , (892) nonresonant 2 2 ± ( 1. 6 ± 0.6 ) × 10−3 230 1. 2 ( 2. 2 ± × 10−3 CL=90% 768 713 0.6 ) × 10−4 ± { { 642 , no 3 { 768 ± < 2 Fra tions of many of the following modes with resonan es have already appeared above as submodes of parti ular harged-parti le modes. (Modes for whi h there are only upper limits and K ∗ (892) ρ submodes only appear below.) ( 4.79 ± 0.30 ) × 10−3 K 0S η ( 1.11 ± 0.06 ) % K 0S ω K 0S η′ ( 9.4 ± 0.5 ) × 10−3 + K − a1 ( 7.8 ± 1.1 ) % + < 2 × 10−3 CL=90% K − a2 0 π+ π− K∗ ( 2.4 ± 0.5 ) % 0 π+ π− K∗ ( 1.48 ± 0.34 ) % 0 ρ0 ( 1.58 ± 0.34 ) % K∗ 0 ρ0 K∗ ( 1.7 ± 0.6 ) % 0 ρ0 S ( 3.0 ± 0.6 ) % K∗ 0 ρ0 S CL=90% K∗ < 3 × 10−3 0 ρ0 P CL=90% K∗ < 3 × 10−3 0 ∗ 0 K ρ D ( 2.1 ± 0.6 ) % − π+ K1 [ f ℄ ( 1.6 ± 0.8 ) % − π+ K1 < 1. 2 % CL=90% 0 π+ π− π0 ( 1.9 ± 0.9 ) % K∗ − + K π ω ( 3.0 ± 0.6 ) % 0ω K∗ ( 1.1 ± 0.5 ) % K − π+ η′ ( 7.5 ± 1.9 ) × 10−3 0 η′ CL=90% K∗ < 1. 1 × 10−3 K ( 4.47 ± 0.34 ) × 10−3 K 0S K + K − 0 a0 → K + K − K 0S a0 ( 3.0 ± 0.4 ) × 10−3 0 + a+ → K + K 0 K − a0 ( 6.0 ± 1.8 ) × 10−4 S 0 − a− → K − K 0 CL=95% < 1. 1 × 10−4 K + a0 S 0 K 0S f0 f0 → K + K − < 9 CL=95% × 10−5 ( 2.05 ± 0.16 ) × 10−3 K 0S φ φ → K + K − K 0S f0 f0 → K + K − ( 1.7 ± 1.1 ) × 10−4 K 0S ( 9.1 ± 1.3 ) × 10−4 ( 2.21 ± 0.31 ) × 10−4 K + K − π+ 0 ( 4.4 ± 1.7 ) × 10−5 K+ K− K∗ 0 → K − π+ K∗ K − π+ φ φ → K + K − ( 4.0 ± 1.7 ) × 10−5 0 φK∗ ( 1.06 ± 0.20 ) × 10−4 φ → K+K− 0 → K − π+ K∗ K + K − π+ ( 3.3 ± 1.5 ) × 10−5 ( 6.0 ± 1.3 ) × 10−4 K 0S K ± π∓ (958) (1320) (892) total (892) 3-body (892) (892) transverse (892) -wave (892) -wave long. (892) -wave (892) -wave (1270) (1400) (892) (892) (958) (892) (958) Hadroni (980) modes with three 's , 772 670 565 327 198 685 685 417 417 417 417 417 417 484 386 643 605 410 479 119 544 { (980) , { (980) , { , 3 2 { 2.3 ) × 10−3 0.3 ) × 10−3 ± , no 0.5 ) × 10−3 0.31 ) × 10−3 0.7 ) × 10−3 8 ) × 10−4 ( 2.69 ( 1. 1 (5 2 2 ± (1370) , { 685 ± (892) { 0.4 ) % ± ( 1. 6 , (892) (980) , ± ± , 711 327 , , { 0.6 ) % , 2 0.4 ) × 10−3 46 ± (1270) 2 ) × 10−5 1.1 ) × 10−4 ± 1.1 ) × 10−4 + 0.21 − 0.19 ) % ± 0.33 ) % ± 2.3 ) × 10−3 ± 0.23 ) % (892) (1270) 23 ± (892) (892) 711 844 S=2.2 843 2 (892) 711 + 0.50 ) % 0.19 ± 1.1 ) × 10−3 ± 0.7 ) × 10−3 ± 0.7 ) × 10−3 (892) (1260) † 379 ± (892) 842 S=1.7 844 675 + 5.0 −3 − 1.5 ) × 10 ± 0.7 ) × 10−3 − (892) (1260) 378 , total ) × 10−4 )% )% ) × 10−3 { 2.1 ) × 10−3 ± (1680) 2 10−5 CL=95% + 0.40 − 0.19 ) % ± 0.23 ) % ± 2 46 { , , one 367 + 0.60 ) × 10−4 711 − 0.34 CL=95% × 10−5 (1430) 2 378 + 1.9 ) × 10−4 1.0 ± 4 ) × 10−4 (892) (1270) , 711 − (892) (1430) 262 − , (1430) 0η K∗ 0 → K0 π K∗ S K 0S π+ π− 0 + − − 0 K∗ KS ρ π π − π+ π− K∗ − → K 0 π− K∗ S ρ0 − ρ0 π + K∗ − → K 0 π− K∗ S K 0S π+ π− K − π+ π− 0 ) × 10−5 (1430) (1430) † − (892) , (892) , (892) , { 520 { 539 434 † 422 † , (892) 2 nonresonant 2 π+ π− 0 2π π+ π− π0 ρ+ π − ρ0 π 0 ρ− π + ρ(1450)+ π − , ρ(1450)+ → π+ π0 ρ(1450)0 π 0 , ρ(1450)0 → π+ π− ρ(1450)− π + , ρ(1450)− → π− π0 ρ(1700)+ π − , ρ(1700)+ → π+ π0 ρ(1700)0 π 0 , ρ(1700)0 → π+ π− ρ(1700)− π + , ρ(1700)− → π− π0 f0 (980) π0 , f0 (980) → π+ π− f0 (500) π0 , f0 (500) → π+ π− Pioni modes ( 1.402 ± ( 8.20 ± ( 1.43 ± ( 9. 8 ± ( 3.72 ± ( 4.96 ± ( 1. 6 ± ( 4. 3 ± 0.026) × 10−3 0.35 ) × 10−4 0.06 ) % 0.4 ) × 10−3 0.22 ) × 10−3 0.24 ) × 10−3 2.0 ) × 10−5 1.9 ) × 10−5 0.4 ) × 10 4 1.4 ) × 10−4 1.7 ) × 10−4 ( 2. 6 ± ( 5. 9 ± ( 7. 2 ± ( 4. 6 ± ( 3. 6 ± 1.1 ) × 10−4 0.8 ) × 10−5 ( 1.18 ± 0.21 ) × 10−4 − 434 427 S=1.1 922 923 S=1.9 907 764 764 764 { { { { { { { { 47 (1370) π 0 , f0 (1370) → π+ π− f0 (1500) π 0 , f0 (1500) → π+ π− f0 (1710) π 0 , f0 (1710) → π+ π− f2 (1270) π 0 , f2 (1270) → π+ π− π + π − π 0 nonresonant 3π0 2π+ 2π− a1 (1260)+ π − , a+ 1 → 2π+ π− +total− + a1 (1260) π , a1 → ρ0 π + S-wave a1 (1260)+ π − , a+ 1 → ρ0 π + D-wave a1 (1260)+ π − , a+ 1 → σ π+ 2ρ0 total 2ρ00 , parallel heli ities 2ρ , perpendi ular heli ities 2ρ0 , longitudinal heli ities Resonant (π+ π−) π+ π− 3-body total σ π+ π− f0 (980) π + π − , f0 → π+ π− f2 (1270) π + π − , f2 → π+ π− π + π − 2π 0 f0 η π0 ω π0 π+ π− π0 η π+ π− ω π+ π− π+ π− η′ π0 η′ π+ π− η η η′ 2 2 3 3 (958) (958) 2 (958) (892) (892) ( 1.89 ( 1.20 < 3.5 ( 7.42 ( 4.45 ± ± ± ± ± 1.5 ) × 10 5 0.20 ) × 10−4 − 907 0.35 ) × 10−4 CL=90% 908 × 10−4 S=1.1 880 0.21 ) × 10−3 0.31 ) × 10−3 { ± 0.25 ) × 10−3 { ( 1.9 ± 0.5 ) × 10−4 { ( 6.2 ± { ( 1.25 ( 1.48 ± ± ( 6.1 ( 1.8 ± ± 0.7 ) × 10−4 0.13 ) × 10−3 3.2 ) × 10−5 0.6 ) × 10−4 0.10 ) × 10−3 0.12 ) × 10−3 0.9 ) × 10−4 0.5 ) × 10−4 ( 3.6 ± 0.6 ) × 10−4 ( 1.82 ( 8.2 ( 4. 8 ( 1.00 [hhh℄ ( 6.8 [hhh℄ < 2.6 ( 4.1 [hhh℄ ( 1.09 [hhh℄ ( 1.6 ( 4.2 ( 9.0 ( 4.5 ( 1.67 ( 1.05 , ( 2.1 < 1.8 (892) (892) ) ) ( ) (1270) (1270) (1270) (1270) (1270) (1270) (1270) (1270) , , , ± ± ± ± ± ± ± ± ± ± ± ± ± , , , , ± ± ± ± ( 3.29 ( 1.46 ± ( 5.2 ± , ( 2.34 ( 1. 3 ( 3.5 ( 6.4 < 5.9 ( 2.43 ( 2.50 , ( 9.3 ( 8.3 ( 1.48 , { { { { ( 3.21 , ) ) ) ± ( 3.96 ( 1.7 ( 3.5 < 5 (892) , (892) , ( ) ( ) (980) , , ( ( ( ( ( 5.6 2.1 ) × 10−5 1.5 ) × 10−5 ± ± ± ± ± ± ± ± ± ± ( 2.6 ± ( 1.8 ± ( 1.14 ± ( 2.2 ± ( 1.46 ± 518 { { { { { { { 0.09 ) % 882 0.7 ) × 10−4 846 CL=90% 761 × 10−4 − 3 844 0.5 ) × 10 0.16 ) × 10−3 827 738 0.5 ) × 10−3 795 1.2 ) × 10−4 678 1.4 ) × 10−4 − 4 650 1.7 ) × 10 754 0.20 ) × 10−3 537 0.26 ) × 10−3 Hadroni modes with a K K pair 2 ( ± ( 4.4 K+K− K 0S K 0S K − π + 0 K 0 K ∗0 → K∗ S K − π+ K 0S K + π − 0 K 0S K ∗0 → K∗ K + π− K + K − π0 +K− K∗ +→ K∗ K + π0 −K+ K∗ − → K∗ K − π0 K + π 0 S −wave K − K − π 0 S −wave K + π 0 f0 → K + K − f0 φπ0 φ → K + K − K 0S π 0 K + K − π+ π− φ π+ π − S −wave φ → K+K− φρ0 S −wave φ → K + K − φρ0 D −wave φ → K + K − K ∗0 K ∗0 S −wave K ∗0 → K ± π∓ K − π + P −wave K + π − S −wave +K− K1 + → K ∗0 π + K1 +K− K1 + → ρ0 K + K1 −K+ K1 − → K ∗0 π − K1 −K+ K1 − → ρ0 K − K1 2 ( 5.3 0.08 ) × 10−3 S=1.4 S=2.5 0.4 ) × 10−4 S=1.2 0.5 ) × 10−3 CL=90% × 10−4 S=1.3 0.4 ) × 10−3 × 10−4 CL=90% 0.14 ) × 10−3 0.07 ) × 10−3 0.4 ) × 10−4 0.17 ) × 10−3 0.4 ) × 10−4 0.6 ) × 10−4 0.4 ) × 10−4 × 10−4 0.12 ) × 10−3 0.33 ) × 10−4 1.2 ) × 10−4 2.3 ) × 10−5 0.30 ) × 10−4 0.5 ) × 10−4 0.5 ) × 10−4 0.26 ) × 10−4 1.2 ) × 10−5 0.25 ) × 10−4 791 789 739 608 739 608 743 { { 743 743 { { 740 677 614 250 { { { { { { { + K −, (1410) K ∗ (1410)+ → K ∗ (1410)− K + , K ∗ (1410)− → K∗ K 0S π + π − K 0S K − π + π − K + K − π+ π− π0 2 MesonSummaryTable K ∗0 π + K ∗0 π − 2 < ( 1.02 ± ( 1.14 ± ( 1.23 1. 5 ( 3. 1 ± ± 0.26 ) × 10−4 0.25 ) × 10−4 { { 0.24 ) × 10−3 673 CL=90% 595 × 10−4 2.0 ) × 10−3 600 Other K K X modes. They in lude all de ay modes of the φ, η, and ω. ( 1.4 ± 0.5 ) × 10−4 489 CL=90% 238 < 2.1 × 10−3 φη φω Radiative modes ρ0 γ ωγ φγ K∗ < < (892)0 γ × × K + π− π0 D0 K + π− π0 K + π+ π− D0 K + π+ π− µ− D0 10−5 10−5 ( 1.47 ± 0.07 ) × 10−4 ( 1.31 ± 0.08 ) × 10−4 < 1. 6 × 10−5 < 1. 8 × 10−4 . 60 + 0 ( 1.14 − 0.34 ) × 10−4 < < via DC via DCS via in K ∗ (892)+ π − , DC K ∗ (892)+ → K 0S π + K ∗0 (1430)+ π − , DC K ∗0 (1430)+ → K 0S π + DC K ∗2 (1430)+ π − , K ∗2 (1430)+ → K 0S π + via 2 2 via anything via ± ± 10−4 CL=90% 771 10−4 CL=90% 768 654 0.35 ) 10−5 0.34 ) × 10−4 719 × Doubly Cabibbo suppressed (DC ) modes or C = 2 forbidden via mixing (C2M ) modes K + ℓ− ν ℓ D0 + e− νe K+ K∗ D0 K + π− K + π− K + π− D0 K 0S π + π − D 0 → D 0 via or (892) 2.4 2.4 ( 2.70 ( 3.27 DC DC 2. 2 6 × × CL=90% CL=90% S=2.8 861 { CL=95% 861 CL=95% { 711 < 1. 4 × 10−5 { < 3. 4 × 10−5 { ( 3.04 ( 7. 3 ( 2.62 < 4 < 4 ± ± ± 844 0.17 ) × 10−4 0.5 ) × 10−4 { 813 0.11 ) × 10−4 × 10−4 CL=90% 812 CL=90% { × 10−4 C = 1 weak neutral urrent (C1 ) modes, Lepton Family number (LF ) violating modes, Lepton (L) or Baryon (B ) number violating modes γγ e+ e− µ+ µ− π0 e + e − π 0 µ+ µ− η e+ e− η µ+ µ− π+ π− e + e − ρ0 e + e − π + π − µ+ µ− ρ0 µ+ µ− ω e+ e− ω µ+ µ− K − K + e+ e− φ e+ e− K − K + µ+ µ− φµ+ µ− K 0 e+ e− K 0 µ+ µ− K − π+ e + e − 0 e+ e− K∗ K − π + µ+ µ− 0 µ+ µ− K∗ π + π − π 0 µ+ µ− µ± e ∓ π 0 e ± µ∓ η e ± µ∓ π + π − e ± µ∓ ρ0 e ± µ∓ ω e ± µ∓ K − K + e ± µ∓ φ e ± µ∓ K 0 e ± µ∓ K − π + e ± µ∓ 0 e ± µ∓ K∗ (892) (892) (892) C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 LF LF LF LF LF LF LF LF LF LF LF { { < < < < < < < < < < < < < < < < < [yy ℄ < [yy ℄ < < [yy ℄ < < [yy ℄ < < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < [gg ℄ < 2.2 7. 9 6. 2 4. 5 1. 8 1. 1 5. 3 3.73 1. 0 5. 5 2. 2 1. 8 8. 3 3.15 5. 2 3. 3 3. 1 1. 1 2. 6 3.85 4. 7 3.59 2. 4 8. 1 2.6 8.6 1.0 1.5 4.9 1.2 1.8 3.4 1.0 5.53 8.3 10−6 10−8 × 10−9 × 10−5 × 10−4 × 10−4 × 10−4 × 10−4 × 10−4 × 10−7 × 10−5 × 10−4 × 10−4 × 10−4 × 10−5 × 10−5 × 10−5 × 10−4 × 10−4 × 10−4 × 10−5 × 10−4 × 10−5 × 10−4 × 10−7 × 10−5 × 10−4 × 10−5 × 10−5 × 10−4 × 10−4 × 10−5 × 10−4 × 10−4 × 10−5 × × CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% 932 932 926 928 915 852 838 922 771 894 754 768 751 791 654 710 631 866 852 861 719 829 700 863 929 924 848 911 767 764 754 648 863 848 714 MesonSummaryTable 48 2π− 2e + + . . 2π− 2µ+ + . . K − π− 2e + + . K − π− 2µ+ + . 2K − 2e + + . . 2K − 2µ+ + . . π − π − e + µ+ + K − π− e + µ+ + 2K − e + µ+ + . p e− p e+ L L L L L L L L L L ,B L,B . . . . . . . < 1.12 < 2.9 < 2.06 < 3.9 < 1.52 < 9.4 < 7.9 < 2.18 < 5.7 [iii ℄ < 1.0 [jjj ℄ < 1.1 × 10−4 × 10−5 × 10−4 × 10−4 × 10−4 × 10−5 × 10−5 × 10−4 × 10−5 × 10−5 × 10−5 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% 922 894 861 829 791 710 911 848 754 696 696 D ∗2 (2460)0 modes are harge onjugates of modes below. D ∗2 (2460)0 DECAY MODES Fra tion ( i / ) D + π− D ∗ (2010)+ π− D 0 π+ π− D ∗0 π + π − seen seen not seen not seen J P = 2+ assignment strongly favored. Mass m = 2464.3 ± 1.6 MeV (S = 1.7) m D ∗ (2460)± − m D ∗ (2460)0 = 2.4 ± 1.7 MeV Mass m = 2006.96 ± 0.10 MeV − m D 0 = 142.12 ± 0.07 MeV Full width < 2.1 MeV, CL = 90% 2 Full width m D ∗0 D 0 π0 D0 γ Fra tion ( i / ) (61.9 ± 2.9) % (38.1 ± 2.9) % p (MeV/ ) 43 137 I (J P ) = 21 (1− ) I, J, P need on rmation. D ∗(2010)± D ∗2 (2460)± DECAY MODES D 0 π+ D + π0 D+ γ (67.7 ± 0.5) % (30.7 ± 0.5) % ( 1.6 ± 0.4) % C p (MeV/ ) 39 38 136 I (J P ) = 21 (0+) D ∗0(2400)0 Mass m = 2318 ± 29 MeV (S = 1.7) Full width = 267 ± 40 MeV D ∗0 (2400)0 DECAY MODES D + π− Fra tion ( i / ) seen D1 (2420)0 p (MeV/ ) 385 I (J P ) = 21 (1+) I needs on rmation. Mass m = 2421.4 ± 0.6 MeV (S = 1.2) m D 0 − m D ∗+ = 411.1 ± 0.6 (S = 1.2) 1 Full width = 27.4 ± 2.5 MeV (S = 2.3) D 1 (2420)0 modes are harge onjugates of modes below. D1 (2420)0 DECAY MODES D ∗ (2010)+ π− D 0 π+ π− D + π− D ∗0 π + π − D ∗2(2460)0 Fra tion ( i / ) seen seen not seen not seen I (J P ) = 21 (2+) J P = 2+ assignment strongly favored. Mass m = 2462.6 ± 0.6 MeV (S = 1.2) m D ∗0 − m D + = 593.0 ± 0.6 MeV (S = 1.2) 2 m D ∗0 − m D ∗+ = 452.3 ± 0.6 MeV (S = 1.2) 2 Full width = 49.0 ± 1.3 MeV (S = 1.5) seen seen not seen not seen CHARMED, STRANGE MESONS ( = = ± 1) − + D s = s , D s = s, similarly for D ∗s 's Full width = 83.4 ± 1.8 keV D ∗ (2010)− modes are harge onjugates of the modes below. Fra tion ( i / ) (S = 1.4) Fra tion ( i / ) D 0 π+ D ∗0 π + D + π+ π− D ∗+ π + π − Mass m = 2010.26 ± 0.07 MeV (S = 1.1) m D ∗ (2010)+ − m D + = 140.66 ± 0.08 MeV m D ∗ (2010)+ − m D 0 = 145.4257 ± 0.0017 MeV D ∗ (2010)± DECAY MODES 2 = 37 ± 6 MeV D ∗2 (2460)− modes are harge onjugates of modes below. D ∗ (2007)0 modes are harge onjugates of modes below. D ∗ (2007)0 DECAY MODES 507 391 463 326 I (J P ) = 21 (2+) D ∗2(2460)± I (J P ) = 21 (1− ) I, J, P need on rmation. D ∗(2007)0 p (MeV/ ) p (MeV/ ) 354 425 473 280 S I (J P ) = 0(0− ) D ±s Mass m = 1968.30 ± 0.11 MeV (S = 1.1) − m D ± = 98.69 ± 0.05 MeV mD± s Mean life τ = (500 ± 7) × 10−15 s (S = 1.3) τ = 149.9 µm CP-violating de ay-rate asymmetries ACP (µ± ν ) = (5 ± 6)% ACP (K ± K 0S ) = (0.08 ± 0.26)% ACP (K + K − π± ) = (− 0.5 ± 0.9)% ACP (K ± K 0S π0 ) = (− 2 ± 6)% ACP (2K 0S π± ) = (3 ± 5)% ACP (K + K − π± π0 ) = (0.0 ± 3.0)% ACP (K ± K 0S π+ π− ) = (− 6 ± 5)% ACP (K 0S K ∓ 2π± ) = (4.1 ± 2.8)% ACP (π+ π− π± ) = (− 0.7 ± 3.1)% ACP (π± η) = (1.1 ± 3.1)% ACP (π± η′ ) = (− 2.2 ± 2.3)% ACP (η π± π0 ) = (− 1 ± 4)% ACP (η′ π± π0 ) = (0 ± 8)% ACP (K ± π0 ) = (− 27 ± 24)% ACP (K 0S π± ) = (1.2 ± 1.0)% (S = 1.3) ACP (K ± π+ π− ) = (4 ± 5)% ACP (K ± η) = (9 ± 15)% ACP (K ± η′ (958)) = (6 ± 19)% T-violating de ay-rate asymmetry AT (K 0S K ± π+ π− ) = (− 14 ± 8) × 10−3 [rr ℄ + D+ s → φℓ νℓ form fa tors r2 = 0.84 ± 0.11 (S = 2.4) rv = 1.80 ± 0.08 L / T = 0.72 ± 0.18 p (MeV/ ) 512 395 461 324 49 Meson Summary Table Unless otherwise noted, the bran hing fra tions for modes with a resonan e in the nal state in lude all the de ay modes of the resonan e. D − modes s are harge onjugates of the modes below. D + DECAY MODES s S ale fa tor/ p Con den e level (MeV/ ) Fra tion ( i / ) In lusive modes e + semileptoni [kkk ℄ π + anything π − anything π 0 anything K − anything K + anything K 0S anything η anything [lll ℄ ω anything ′ η anything [nnn℄ f0 (980) anything, f0 → π + π − φ anything K + K − anything K 0S K + anything K 0S K − anything 2K 0S anything 2K + anything 2K − anything ( 6.5 ± 0.4 ) % (119.3 ± 1.4 ) % ( 43.2 ± 0.9 ) % (123 ± 7 ) % ( 18.7 ± 0.5 ) % ( 28.9 ± 0.7 ) % ( 19.0 ± 1.1 ) % ( 29.9 ± 2.8 ) % ( 6.1 ± 1.4 ) % ( 11.7 ± 1.8 ) % < 1.3 % ( 15.7 ± 1.0 ) % ( 15.8 ± 0.7 ) % ( 5.8 ± 0.5 ) % ( 1.9 ± 0.4 ) % ( 1.70 ± 0.32) % < 2.6 × 10−3 < 6 × 10−4 CL=90% CL=90% CL=90% { { { { { { { { { { { { { { { { { { Leptoni and semileptoni modes e + νe µ+ νµ τ + ντ K + K − e + νe φ e + νe η e + νe + η ′ (958) e + νe η e + νe η ′ (958) e + νe ω e + νe K 0 e + νe K ∗ (892)0 e + νe f0 (980) e + νe , f0 → π + π − 8.3 × 10−5 ( 5.56 ± 0.25) × 10−3 ( 5.54 ± 0.24) % | ( 2.49 ± 0.14) % ( 3.66 ± 0.37) % ( 2.67 ± 0.29) % ( 9.9 ± 2.3 ) × 10−3 < 2.0 × 10−3 ( 3.7 ± 1.0 ) × 10−3 ( 1.8 ± 0.7 ) × 10−3 ( 2.00 ± 0.32) × 10−3 < [ooo ℄ [ooo ℄ [ooo ℄ [ooo ℄ [ppp ℄ [ooo ℄ CL=90% S=1.1 CL=90% 984 981 182 851 720 { 908 751 829 921 782 { Hadroni modes with a K K pair K + K 0S K+K0 K + K − π+ [ss ℄ φπ+ [ooo,qqq ℄ φπ+ , φ → K + K − [qqq ℄ K + K ∗ (892)0 , K ∗0 → K − π+ f0 (980) π + , f0 → K + K − f0 (1370) π + , f0 → K + K − f0 (1710) π + , f0 → K + K − K + K ∗0 (1430)0 , K ∗0 → K − π+ K + K 0S π 0 2K 0S π+ K 0 K 0 π+ K ∗ (892)+ K 0 [ooo ℄ K + K − π+ π0 φρ+ [ooo ℄ K 0S K − 2π + K ∗ (892)+ K ∗ (892)0 [ooo ℄ K + K 0S π + π − K + K − 2π + π − φ 2π+ π − [ooo ℄ K + K − ρ0 π + non-φ φρ0 π + , φ → K + K − φ a1 (1260)+ , φ → 0 + K + K − , a+ 1 → ρ π K + K − 2π + π − nonresonant 2K 0S 2π+ π− ( ( ( ( ( ( 1.49 ± 0.06) % 2.95 ± 0.14) % 5.39 ± 0.21) % 4.5 ± 0.4 ) % 2.24 ± 0.10) % 2.58 ± 0.11) % ( ( ( ( 1.14 ± 0.31) % 7 ± 5 ) × 10−4 6.6 ± 2.9 ) × 10−4 1.8 ± 0.4 ) × 10−3 732 ( 1.52 ± 0.22) % ( 7.7 ± 0.6 ) × 10−3 | ( 5.4 ± 1.2 ) % ( 6.3 ± 0.7 ) % +1.9 ) % ( 8.4 − 2.3 ( 1.66 ± 0.11) % ( 7.2 ± 2.6 ) % ( 1.03 ± 0.10) % ( 8.6 ± 1.5 ) × 10−3 805 802 802 683 748 ( 1.21 ± 0.16) % 2.6 × 10−4 ( 6.5 ± 1.3 ) × 10−3 ( 7.4 ± 1.2 ) × 10−3 < ( 9 ( 8 ±7 ±4 < [rrr ℄ ( ( ( ( ( { 198 218 S=1.1 401 CL=90% 3.4 × 10−4 1.09 ± 0.05) % 2.0 ± 1.2 ) × 10−4 9.0 ± 0.5 ) × 10−3 1.09 ± 0.20) × 10−3 3.0 ± 1.9 ) × 10−4 744 417 744 673 640 249 181 † ) × 10−4 ) × 10−4 Hadroni modes without K 's π+ π0 2π + π − ρ0 π + π + (π + π − )S −wave f2 (1270) π + , f2 → π + π − ρ(1450)0 π + , ρ0 → π + π − S=1.4 850 850 805 712 712 416 673 669 CL=90% S=1.2 975 959 825 959 559 421 π + 2π 0 2π+ π− π0 η π+ ω π+ 3π+ 2π− 2π+ π− 2π0 η ρ+ η π+ π0 ω π+ π0 3π+ 2π− π0 ω 2π + π − η ′ (958) π + 3π+ 2π− 2π0 ω η π+ η ′ (958) ρ+ η ′ (958) π + π 0 [ooo ℄ [ooo ℄ [ooo ℄ [ooo ℄ [ooo ℄ [nnn,ooo ℄ [ooo ℄ [nnn,ooo ℄ ( 6.5 ± 1.3 ) × 10−3 | ( 1.69 ± 0.10) % ( 2.4 ± 0.6 ) × 10−3 ( 7.9 ± 0.8 ) × 10−3 | ( 8. 9 ± 0 . 8 ) % ( 9.2 ± 1.2 ) % ( 2 . 8 ± 0. 7 ) % ( 4. 9 ± 3. 2 ) % ( 1. 6 ± 0 . 5 ) % ( 3.94 ± 0.25) % | < 2.13 % ( 12.5 ± 2.2 ) % ( 5. 6 ± 0 . 8 ) % S=1.2 CL=90% Modes with one or three K 's K + π0 K 0S π + K+η K+ω K + η ′ (958) K + π+ π− K + ρ0 K + ρ(1450)0 , ρ0 → π + π − K ∗ (892)0 π + , K ∗0 → K + π− K ∗ (1410)0 π + , K ∗0 → K + π− K ∗ (1430)0 π + , K ∗0 → K + π− K + π + π − nonresonant K 0 π+ π0 K 0S 2π + π − K + ω π0 K + ω π+ π− K+ωη 2K + K − φK+ , φ → K+ K− ( 6.3 ± 2.1 ) × 10−4 ( 1.21 ± 0.06) × 10−3 [ooo ℄ ( 1.76 ± 0.35) × 10−3 [ooo ℄ < 2.4 × 10−3 [ooo ℄ ( 1.8 ± 0.6 ) × 10−3 ( 6.5 ± 0.4 ) × 10−3 ( 2.5 ± 0.4 ) × 10−3 ( 6.9 ± 2.4 ) × 10−4 ( 1.41 ± 0.24) × 10−3 CL=90% 960 935 902 822 899 902 724 885 802 856 766 743 803 654 465 720 917 916 835 741 646 900 745 { 775 ( 1.23 ± 0.28) × 10−3 { ( 5.0 ± 3.5 ) × 10−4 { ( 1.04 ± 0.34) × 10−3 ( 1.00 ± 0.18) % ( 3.0 ± 1.1 ) × 10−3 × 10−3 [ooo ℄ < 8.2 [ooo ℄ < 5.4 × 10−3 [ooo ℄ < 7.9 × 10−3 ( 2.16 ± 0.21) × 10−4 ( 8.8 ± 2.0 ) × 10−5 900 899 870 684 603 366 627 CL=90% CL=90% CL=90% { Doubly Cabibbo-suppressed modes 2K + π− ( 1.26 ± 0.13) × 10−4 ( 5.9 ± 3.4 ) × 10−5 K + K ∗ (892)0 , K ∗0 → K + π− 805 { Baryon-antibaryon mode ( 1.3 ± 0.4 ) × 10−3 pn 295 C = 1 weak neutral urrent (C1 ) modes, Lepton family number (LF), or Lepton number (L) violating modes π+ e + e − [yy ℄ < π + φ, φ → e + e − [xx ℄ π + µ+ µ− K + e+ e− K + µ+ µ− K ∗ (892)+ µ+ µ− π + e + µ− π + e − µ+ K + e + µ− K + e − µ+ π − 2e + π − 2µ+ π − e + µ+ K − 2e + K − 2µ+ K − e + µ+ K ∗ (892)− 2µ+ [yy ℄ < C1 < < C1 < LF < LF < LF LF < < L < L < < C1 L L < < L < L < L D ∗± s 1. 3 ( 6 +8 −4 4. 1 3. 7 2. 1 1. 4 1. 2 2. 0 1. 4 9. 7 4. 1 1. 2 8. 4 5. 2 1. 3 6. 1 1. 4 × 10−5 CL=90% 979 ) × 10−6 × 10−7 × 10−6 × 10−5 × 10−3 × 10−5 × 10−5 × 10−5 × 10−6 × 10−6 × 10−7 × 10−6 × 10−6 × 10−5 × 10−6 × 10−3 CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% 968 922 909 765 976 976 919 919 979 968 976 922 909 919 765 { I (J P ) = 0(?? ) J P is natural, width and de ay modes onsistent with 1− . Mass m = 2112.1 ± 0.4 MeV m D ∗± − m D ± = 143.8 ± 0.4 MeV s Full width s < 1.9 MeV, CL = 90% MesonSummaryTable 50 D ∗− s modes are harge onjugates of the modes below. D s∗+ DECAY MODES p (MeV/ ) Fra tion ( i / ) D+ s γ 0 D+ s π (94.2 ± 0.7) % ( 5.8 ± 0.7) % 139 48 J P is natural, low mass onsistent with 0+ . Mass m = 2317.7 ± 0.6 MeV (S = 1.1) m D ∗ (2317)± − m D ± = 349.4 ± 0.6 MeV (S = 1.1) s0 s Full width < 3.8 MeV, CL = 95% D ∗s 0 (2317)− modes are D ∗s 0 (2317)± DECAY MODES 0 D+ s π D + π0 π0 harge onjugates of modes below. p (MeV/ ) Fra tion ( i / ) seen not seen s 298 205 I (J P ) = 0(1+) Ds 1 (2460)± Ds 1 (2460)+ DECAY MODES D ∗s + π0 D+ s γ+ − D+ s π π D ∗s + γ D ∗s 0 (2317)+ γ mass, mean life, CP violation, bran hing fra tions • B0 S ale fa tor/ p Con den e level (MeV/ ) (48 ± 11 ) % (18 ± 4 ) % ( 4.3 ± 1.3) % < 8 % + 5. 0 ) % ( 3.7 − 2.4 S=1.1 CL=90% 297 442 363 323 138 Ds 1 (2536)+ DECAY MODES D ∗ (2010)+ K 0 (D ∗ (2010)+ K 0 )S−wave D + π− K + D ∗ (2007)0 K + D+ K 0 D0 K + D ∗s + γ + − D+ s π π mass • B ∗2 (5747)0 mass harge onjugates of the