Main CRC Handbook of Chemistry and Physics, 96th Edition

CRC Handbook of Chemistry and Physics, 96th Edition

0 / 0
How much do you like this book?
What’s the quality of the file?
Download the book for quality assessment
What’s the quality of the downloaded files?

Proudly serving the scientific community for over a century, this 96th edition of the CRC Handbook of Chemistry and Physics is an update of a classic reference, mirroring the growth and direction of science. This venerable work continues to be the most accessed and respected scientific reference in the world. An authoritative resource consisting of tables of data and current international recommendations on nomenclature, symbols, and units, its usefulness spans not only the physical sciences but also related areas of biology, geology, and environmental science.

The 96th edition of the Handbook includes 18 new or updated tables along with other updates and expansions. A new series highlighting the achievements of some of the major historical figures in chemistry and physics was initiated with the 94th edition. This series is continued with this edition, which is focused on Lord Kelvin, Michael Faraday, John Dalton, and Robert Boyle. This series, which provides biographical information, a list of major achievements, and notable quotations attributed to each of the renowned chemists and physicists, will be continued in succeeding editions. Each edition will feature two chemists and two physicists.

The 96th edition now includes a complimentary eBook with purchase of the print version. This reference puts physical property data and mathematical formulas used in labs and classrooms every day within easy reach.

New Tables:

Section 1: Basic Constants, Units, and Conversion Factors

  • Descriptive Terms for Solubility

Section 8: Analytical Chemistry

  • Stationary Phases for Porous Layer Open Tubular Columns
  • Coolants for Cryotrapping
  • Instability of HPLC Solvents
  • Chlorine-Bromine Combination Isotope Intensities

Section 16: Health and Safety Information

  • Materials Compatible with and Resistant to 72 Percent Perchloric Acid
  • Relative Dose Ranges from Ionizing Radiation

Updated and Expanded Tables

Section 6: Fluid Properties

  • Sublimation Pressure of Solids
  • Vapor Pressure of Fluids at Temperatures Below 300 K

Section 7: Biochemistry

  • Structure and Functions of Some Common Drugs

Section 9: Molecular Structure and Spectroscopy

  • Bond Dissociation Energies

Section 11: Nuclear and Particle Physics

  • Summary Tables of Particle Properties
  • Table of the Isotopes

Section 14: Geophysics, Astronomy, and Acoustics

  • Major World Earthquakes
  • Atmospheric Concentration of Carbon Dioxide, 1958-2014
  • Global Temperature Trend, 1880-2014

Section 15: Practical Laboratory Data

  • Dependence of Boiling Point on Pressure

Section 16: Health and Safety Information

  • Threshold Limits for Airborne Contaminants
Categories:
Volume:
Part 11 - 20
Year:
2015
Edition:
96
Publisher:
CRC Press
Language:
english
Pages:
2677 / 1116
ISBN 10:
1482260964
ISBN 13:
9781482260960
Series:
CRC Handbook of Chemistry & Physics
File:
PDF, 87.39 MB
Download (pdf, 87.39 MB)
Conversion to is in progress
Conversion to is failed

Most frequently terms

 
0 comments
 

To post a review, please sign in or sign up
You can write a book review and share your experiences. Other readers will always be interested in your opinion of the books you've read. Whether you've loved the book or not, if you give your honest and detailed thoughts then people will find new books that are right for them.
1

Basic Rights

Language:
english
File:
PDF, 7.29 MB
0 / 0
2

Hypo-Analytic Structures: Local Theory

Year:
1993
Language:
english
File:
DJVU, 5.10 MB
0 / 0
27

Gauge & Higgs Boson Summary Table
SUMMARY TABLES OF PARTICLE PROPERTIES
Extracted from the Particle Listings of the

Review of Particle Physics

W

J=1
Charge = ± 1 e
Mass m = 80.385 ± 0.015 GeV
m Z − m W = 10.4 ± 1.6 GeV
m W + − m W − = − 0.2 ± 0.6 GeV
Full
= 2.085 ± 0.042 GeV
®
­ width
N
=
15
.
70 ± 0.35
±
­ π ®
­NK®± = 2.20 ± 0.19
­Np = 0®.92 ± 0.14
N harged = 19.39 ± 0.08

K.A. Olive et al. (Particle Data Group),
Chin. Phys. C, 38, 090001 (2014)
Available at http://pdg.lbl.gov
Particle Data Group
K.A. Olive, K. Agashe, C. Amsler, M. Antonelli, J.-F. Arguin, D.M. Asner,
H. Baer, H.R. Band, R.M. Barnett, T. Basaglia, C.W. Bauer, J.J. Beatty,
V.I. Belousov, J. Beringer, G. Bernardi, S. Bethke, H. Bichsel, O. Biebel,
E. Blucher, S. Blusk, G. Brooijmans, O. Buchmueller, V. Burkert,
M.A. Bychkov, R.N. Cahn, M. Carena, A. Ceccucci, A. Cerri,
D. Chakraborty, M.-C. Chen, R.S. Chivukula, K. Copic, G. Cowan,
O. Dahl, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvêa,
T. DeGrand, P. de Jong, G. Dissertori, B.A. Dobrescu, M. Doser, M. Drees,
H.K. Dreiner, D.A. Edwards, S. Eidelman, J. Erler, V.V. Ezhela,
W. Fetscher, B.D. Fields, B. Foster, A. Freitas, T.K. Gaisser, H. Gallagher,
L. Garren, H.-J. Gerber, G. Gerbier, T. Gershon, T. Gherghetta,
S. Golwala, M. Goodman, C. Grab, A.V. Gritsan, C. Grojean, D.E. Groom,
M. Grünewald, A. Gurtu, T. Gutsche, H.E. Haber, K. Hagiwara,
C. Hanhart, S. Hashimoto, Y. Hayato, K.G. Hayes, M. Heffner, B. Heltsley,
J.J. Hernández-Rey, K. Hikasa, A. Höcker, J. Holder, A. Holtkamp,
J. Huston, J.D. Jackson, K.F. Johnson, T. Junk, M. Kado, D. Karlen,
U.F. Katz, S.R. Klein, E. Klempt, R.V. Kowalewski, F. Krauss, M. Kreps,
B. Krusche, Yu.V. Kuyanov, Y. Kwon, O. Lahav, J. Laiho, P. Langacker,
A. Liddle, Z. Ligeti, C.-J. Lin, T.M. Liss, L. Littenberg, K.S. Lugovsky,
S.B. Lugovsky, F. Maltoni, T. Mannel, A.V. Manohar, W.J. Marciano,
A.D. Martin, A. Masoni, J. Matthews, D. Milstead, P. Molaro, K. Mönig,
F. Moortgat, M.J. Mortonson, H. Murayama, K. Nakamura, M. Narain,
P. Nason, S.;  Navas, M. Neubert, P. Nevski, Y. Nir, L. Pape, J. Parsons,
C. Patrignani, J.A. Peacock, M. Pennington, S.T. Petcov, A. Piepke,
A. Pomarol, A. Quadt, S. Raby, J. Rademacker, G. Raffelt, B.N. Ratcliff,
P. Richardson, A. Ringwald, S. Roesler, S. Rolli, A. Romaniouk,
L.J. Rosenberg, J.L. Rosner, G. Rybka, C.T. Sachrajda, Y. Sakai,
G.P. Salam, S. Sarkar, F. Sauli, O. Schneider, K. Scholberg, D. Scott,
V. Sharma, S.R. Sharpe, M. Silari, T. Sjöstrand, P. Skands, J.G. Smith,
G.F. Smoot, S. Spanier, H. Spieler, C. Spiering, A. Stahl, T. Stanev,
S.L. Stone, T. Sumiyoshi, M.J. Syphers, F. Takahashi, M. Tanabashi,
J. Terning, L. Tiator, M. Titov, N.P. Tkachenko, N.A. Törnqvist, D. Tovey,
G. Valencia, G. Venanzoni, M.G. Vincter, P. Vogel, A. Vogt, S.P. Wakely,
W. Walkowiak, C.W. Walter, D.R. Ward, G. Weiglein, D.H. Weinberg,
E.J. Weinberg, M. White, L.R. Wiencke, C.G. Wohl, L. Wolfenstein,
J. Womersley, C.L. Woody, R.L. Workman, A. Yamamoto, W.-M. Yao,
G.P. Zeller, O.V. Zenin, J. Zhang, R.-Y. Zhu, F. Zimmermann, P.A. Zyla
Technical Associates:
G. Harper, V.S. Lugovsky, P. Schaffner
c
°2014
Regents of the University of California
(Approximate closing date for data: January 15, 2014)

GAUGE AND HIGGS BOSONS
I (J PC ) = 0,1(1 − − )

γ
Mass m < 1 × 10−18 eV
Charge q < 1 × 10−35 e
Mean life τ = Stable

g

I (J P ) = 0(1− )

or gluon

Mass m = 0 [a℄
SU(3) olor o tet

J=2

graviton
Mass m < 6 × 10−32 eV

W − modes are harge onjugates of the modes below.
W + DECAY MODES
ℓ+ ν

[b ℄

e+ ν

µ+ ν
τ+ ν

hadrons
π+ γ
D+
s γ

X

s

invisible

Z

Fra tion ( i / )

(10.86 ± 0.09) %
(10.71 ± 0.16) %
(10.63 ± 0.15) %
(11.38 ± 0.21) %
(67.41 ± 0.27) %
< 7
× 10−5
< 1.3
× 10−3
(33.3 ± 2.6 ) %
+13 ) %
(31 −
11
[ ℄ ( 1. 4 ± 2. 9 ) %

J=1
Charge = 0
Mass m = 91.1876 ± 0.0021 GeV [d ℄
Full
= 2.4952 ± 0.0023 GeV
¡ +width
¢
ℓ ℓ− = 83.984 ± 0.086 MeV [b℄
¡
¢
invisible = 499.0 ± 1.5 MeV [e ℄

¡
¢
=
¡hadrons
¡ 1744.¢4 ± 2.0 MeV
¢
µ+ µ− / e + e − = 1.0009 ± 0.0028
¡ + −¢ ¡ + −¢
= 1.0019 ± 0.0032 [f ℄
τ τ / e e

Average harged multipli ity
­
®
N harged = 20.76 ± 0.16 (S = 2.1)
Couplings to quarks and leptons
g ℓV = − 0.03783 ± 0.00041
07
g uV = 0.25 −+ 00..06
05
g dV = − 0.33 +− 00..06
ℓ
g A = − 0.50123 ± 0.00026
04
g uA = 0.50 +− 00..06
050
g dA = − 0.523 −+ 00..029
ν
ℓ
g = 0.5008 ± 0.0008
g νe = 0.53 ± 0.09
g νµ = 0.502 ± 0.017
Asymmetry parameters [g ℄

Ae = 0.1515 ± 0.0019
Aµ = 0.142 ± 0.015
Aτ = 0.143 ± 0.004
As = 0.90 ± 0.09
A = 0.670 ± 0.027
Ab = 0.923 ± 0.020
Charge asymmetry (%) at Z pole
(0ℓ)
AFB
= 1.71 ± 0.10
(0u )
AFB = 4 ± 7
s)
A(0
FB = 9.8 ± 1.1
(0 )
AFB = 7.07 ± 0.35
b)
A(0
FB = 9.92 ± 0.16

p

Con den e level (MeV/ )

{

40192
40192
40173
95%
95%

{

40192
40168

{
{
{

28

Gauge & Higgs Boson Summary Table
Z DECAY MODES

e+ e−

µ+ µ−
τ+ τ−
ℓ+ ℓ−

[b ℄

ℓ+ ℓ− ℓ+ ℓ−

[h ℄

invisible
hadrons
( uu + )/2
( dd + ss + bb )/3

bb
bbbb
ggg

π0 γ
ηγ
ωγ
η ′ (958) γ
γγ
γγγ
π± W ∓
ρ± W ∓

[i ℄
[i ℄

J /ψ(1S )X
ψ (2S )X
χ 1 (1P )X
χ 2 (1P )X
 (1S ) X + (2S ) X
+ (3S ) X
 (1S )X
 (2S )X
 (3S )X
(D 0 / D 0 ) X
D± X
D ∗ (2010)± X
Ds 1 (2536)± X
DsJ (2573)± X
D ∗′ (2629)± X
B+ X
B 0s X
B+ X
+ X
0 X
b X
b -baryon X

H

0

3.363 ± 0.004 ) %
3.366 ± 0.007 ) %
3.370 ± 0.008 ) %
3.3658 ± 0.0023) %
.9
( 4.2 +0
) × 10−6
− 0. 8
(20.00 ± 0.06 ) %
(69.91 ± 0.06 ) %
(11.6 ± 0.6 ) %
(15.6 ± 0.4 ) %
(12.03 ± 0.21 ) %
(15.12 ± 0.05 ) %
( 3.6 ± 1.3 ) × 10−4
< 1.1
%
< 5.2
× 10−5
< 5.1
× 10−5
< 6.5
× 10−4
< 4.2
× 10−5
< 5.2
× 10−5
< 1. 0
× 10−5
< 7
× 10−5
< 8.3
× 10−5
( 1.60
( 2.9
< 3.2
( 1.0

{

45594

{
{
{
{
{
{
{
{

45594
45592
45590
45589
45594
45594
10162
10136

+0.23 ) × 10−3
S=1.1
− 0.25
± 0.29 ) × 10−3
± 0.7
) × 10−3
× 10−3 CL=90%
± 0. 5
) × 10−4

{
{
{
{
{

× 10−5 CL=95%
× 10−4 CL=95%

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

< 1.39
< 9. 4

LF
LF
LF
L,B
L,B

45594
45594
45559

CL=95%
CL=95%
CL=95%
CL=95%
CL=95%
CL=95%
CL=95%
CL=95%
CL=95%

< 4. 4

e+ e− γ

pe
pµ

(
(
(
(

( 3.51

anomalous γ + hadrons

µ+ µ− γ
τ+ τ− γ
ℓ+ ℓ− γ γ
qqγγ
ννγγ
e ± µ∓
e± τ ∓
µ± τ ∓

S ale fa tor/
p
Con den e level (MeV/ )

Fra tion ( i / )

(20.7 ± 2.0
(12.2 ± 1.7
[i ℄ (11.4 ± 1.3
( 3.6 ± 0.8
( 5.8 ± 2.2
sear hed for
[j ℄ ( 6.08 ± 0.13
[j ℄ ( 1.59 ± 0.13
sear hed for
( 1.54 ± 0.33
seen
seen
[j ℄ ( 1.38 ± 0.22
[k ℄ < 3.2
[k ℄ < 5.2
[k ℄ < 5.6
[k ℄ < 7.3
[l ℄ < 6.8
[l ℄ < 5 . 5
[l ℄ < 3 . 1
[i ℄ < 1.7
[i ℄ < 9.8
[i ℄ < 1.2
< 1.8
< 1.8

× 10−5 CL=95%
)%
)%
)%
) × 10−3
) × 10−3

)%
)%
)%

)%

× 10−3 CL=95%
× 10−4 CL=95%

× 10−4 CL=95%
× 10−4 CL=95%
× 10−6 CL=95%
× 10−6 CL=95%
× 10−6 CL=95%
× 10−6 CL=95%
× 10−6 CL=95%
× 10−5 CL=95%
× 10−6 CL=95%
× 10−6 CL=95%

J=0
Mass m = 125.7 ± 0.4 GeV

H 0 Signal Strengths in Di erent Channels

Combined Final States = 1.17 ± 0.17 (S = 1.2)
0.24
W W ∗ = 0.87 +
− 0.22
.34
+
0
∗
Z Z = 1.11 − 0.28 (S = 1.3)
0.27
γ γ = 1.58 +
− 0.23
b b = 1.1 ± 0.5
τ + τ − = 0.4 ± 0.6
Z γ < 9.5, CL = 95%

45594
45594
45559

{
{

45594
45594
45576
45576
45589
45589

Neutral Higgs Bosons, Sear hes for

Sear hes for a Higgs Boson with Standard Model Couplings
Mass m > 122 and none 128{710 GeV, CL = 95%
The limits for H 01 and A0 in supersymmetri models refer to the mmax
h
ben hmark s enario for the supersymmetri parameters.

H 01 in Supersymmetri Models (m H 0 <m H 0 )
2
1
Mass m > 92.8 GeV, CL = 95%
A0 Pseudos alar Higgs Boson in Supersymmetri Models [n℄
Mass m > 93.4 GeV, CL = 95% tanβ >0.4

H

Charged Higgs Bosons ( ± and

H±

H ±± ), Sear

hes for

Mass m > 80 GeV, CL = 95%

New Heavy Bosons
( ′ , ′ , leptoquarks, et .),
Sear hes for

W Z

Additional W Bosons
W ′ with standard ouplings
Mass m > 2.900 × 103 GeV, CL = 95% (p p dire t sear h)
WR (Right-handed W Boson)
Mass m > 715 GeV, CL = 90% (ele troweak t)
Additional Z Bosons
′
Z SM with standard ouplings
Mass m > 2.590 × 103 GeV, CL = 95% (p p dire t sear h)
Mass m > 1.500 × 103 GeV, CL = 95% (ele troweak t)
ZLR of SU(2)L ×SU(2)R ×U(1) (with gL = gR )
Mass m > 630 GeV, CL = 95% (p p dire t sear h)
Mass m > 1162 GeV, CL = 95% (ele troweak t)
Zχ of SO(10) → SU(5)×U(1)χ (with gχ =e / osθW )
Mass m > 1.970 × 103 GeV, CL = 95% (p p dire t sear h)
Mass m > 1.141 × 103 GeV, CL = 95% (ele troweak t)
Zψ of E6 → SO(10)×U(1)ψ (with gψ =e / osθW )
Mass m > 2.260 × 103 GeV, CL = 95% (p p dire t sear h)
Mass m > 476 GeV, CL = 95% (ele troweak t)
Zη of E6 → SU(3)×SU(2)×U(1)×U(1)η (with gη =e / osθW )
Mass m > 1.870 × 103 GeV, CL = 95% (p p dire t sear h)
Mass m > 619 GeV, CL = 95% (ele troweak t)
S alar Leptoquarks
Mass m > 830 GeV, CL = 95% (1st generation, pair prod.)
Mass m > 304 GeV, CL = 95% (1st gener., single prod.)
Mass m > 840 GeV, CL = 95% (2nd gener., pair prod.)
Mass m > 73 GeV, CL = 95% (2nd gener., single prod.)
Mass m > 525 GeV, CL = 95% (3rd gener., pair prod.)
(See the Parti le Listings for assumptions on leptoquark quantum numbers and bran hing fra tions.)
Diquarks
Mass m > 3.750 × 103 GeV, CL = 95%
Axigluon
Mass m > 3.360 × 103 GeV, CL = 95%

A

Axions ( 0 ) and Other
Very Light Bosons, Sear hes for

The standard Pe ei-Quinn axion is ruled out. Variants with redu ed
ouplings or mu h smaller masses are onstrained by various data.
The Parti le Listings in the full Review ontain a Note dis ussing
axion sear hes.
The best limit for the half-life of neutrinoless double beta de ay with
Majoron emission is > 7.2 × 1024 years (CL = 90%).

29

Gauge & Higgs Boson Summary Table
NOTES
In this Summary Table:
When a quantity has \(S = . . .)" to its right, the errorpon the quantity has
been enlarged by the \s ale fa tor" S, de ned as S = χ2 /(N − 1), where
N is the number of measurements used in al ulating the quantity. We do
this when S > 1, whi h often indi ates that the measurements are in onsistent. When S > 1.25, we also show in the Parti le Listings an ideogram of
the measurements. For more about S, see the Introdu tion.
A de ay momentum p is given for ea h de ay mode. For a 2-body de ay, p
is the momentum of ea h de ay produ t in the rest frame of the de aying
parti le. For a 3-or-more-body de ay, p is the largest momentum any of the
produ ts an have in this frame.
[a℄ Theoreti al value. A mass as large as a few MeV may not be pre luded.
[b ℄ ℓ indi ates ea h type of lepton (e , µ, and τ ), not sum over them.
[ ℄ This represents the width for the de ay of the W boson into a harged
parti le with momentum below dete tability, p< 200 MeV.

[d ℄ The Z -boson mass listed here orresponds to a Breit-Wigner resonan e
parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z -boson propagator.
[e ℄ This partial width takes into a ount Z de ays into ν ν and any other
possible undete ted modes.
[f ℄ This ratio has not been orre ted for the τ mass.
[g ℄ Here A ≡ 2gV gA /(g2V +g2A ).
[h℄ Here ℓ indi ates e or µ.
[i ℄ The value is for the sum of the harge states or parti le/antiparti le
states indi ated.
[j ℄ This value is updated using the produ t of (i) the Z → b b
fra tion from this listing and (ii) the b -hadron fra tion in an
unbiased sample of weakly de aying b -hadrons produ ed in Z de ays provided by the Heavy Flavor Averaging Group (HFAG,
http://www.sla .stanford.edu/xorg/hfag/os /PDG 2009/#FRACZ).
[k ℄ See the Z Parti le Listings for the γ energy range used in this measurement.
[l ℄ For m γ γ = (60 ± 5) GeV.
[n℄ The limits assume no invisible de ays.

30

Lepton Summary Table
LEPTONS

De ay parameters

J = 21

e

Mass m = (548.57990946 ± 0.00000022) × 10−6 u
± 0.000000011 MeV
¯
¯Mass m = 0.510998928
¯m + − m − ¯/m < 8 × 10−9 , CL = 90%
e ¯±
¯ e
¯q + + q − ¯ e < 4 × 10−8
e
e
Magneti moment anomaly
(g−2)/2 = (1159.65218076 ± 0.00000027) × 10−6
(g e + − g e − ) / gaverage = (− 0.5 ± 2.1) × 10−12
Ele tri dipole moment d < 10.5 × 10−28 e m, CL = 90%
Mean life τ > 4.6 × 1026 yr, CL = 90% [a℄

J = 21

µ

Mass m = 0.1134289267 ± 0.0000000029 u
Mass m = 105.6583715 ± 0.0000035 MeV
Mean life τ = (2.1969811 ± 0.0000022) × 10−6 s
τ µ+ /τ µ− = 1.00002 ± 0.00008
τ = 658.6384 m
Magneti moment anomaly (g−2)/2 = (11659209 ± 6) × 10−10
(g µ+ − g µ− ) / g average = (− 0.11 ± 0.12) × 10−8
Ele tri dipole moment d = (− 0.1 ± 0.9) × 10−19 e m
De ay parameters [b℄
ρ = 0.74979 ± 0.00026
η = 0.057 ± 0.034
δ = 0.75047 ± 0.00034
+ 0.0016 [ ℄
ξ Pµ = 1.0009 −
0.0007
+ 0.0016 [ ℄
ξ Pµ δ /ρ = 1.0018 −
0.0007
ξ ′ = 1.00 ± 0.04
ξ ′′ = 0.7 ± 0.4
α/A = (0 ± 4) × 10−3
α′ /A = (− 10 ± 20) × 10−3
β /A = (4 ± 6) × 10−3
β ′ /A = (2 ± 7) × 10−3
η = 0.02 ± 0.08
µ+ modes are harge onjugates of the modes below.
µ− DECAY MODES

e − ν e νµ
e − ν e νµ γ
e − ν e νµ e + e −
e − νe ν µ
e− γ
e− e+ e−
e − 2γ

τ

Fra tion ( i / )

p

Con den e level (MeV/ )

≈ 100%

[d ℄
[e ℄

53
53
53

(1.4 ± 0.4) %
(3.4 ± 0.4) × 10−5

Lepton Family number (LF ) violating modes
LF
[f ℄ < 1.2
%
LF
< 5.7
× 10−13
LF
< 1.0
× 10−12
LF
< 7.2
× 10−11

90%
90%
90%
90%

J = 21
Mass m = 1776.82 ± 0.16 MeV
(m τ + − m τ − )/maverage < 2.8 × 10−4 , CL = 90%
Mean life τ = (290.3 ± 0.5) × 10−15 s
τ = 87.03 µm
Magneti moment anomaly > − 0.052 and < 0.013, CL = 95%
Re(d τ ) = − 0.220 to 0.45 × 10−16 e m, CL = 95%
Im(d τ ) = − 0.250 to 0.0080 × 10−16 e m, CL = 95%
Weak dipole moment
Re(d τw ) < 0.50 × 10−17 e m, CL = 95%
Im(d τw ) < 1.1 × 10−17 e m, CL = 95%
Weak anomalous magneti dipole moment
−3
Re(αw
τ ) < 1.1 × 10 , CL = 95%
−3 , CL = 95%
)
<
2
.
7
×
10
Im(αw
τ
τ ± → π ± K 0S ντ (RATE DIFFERENCE) / (RATE SUM) =
(− 0.36 ± 0.25)%

53
53
53
53

See the τ Parti le Listings for a note on erning τ -de ay parameters.
ρ(e or µ) = 0.745 ± 0.008
ρ(e ) = 0.747 ± 0.010
ρ(µ) = 0.763 ± 0.020
ξ (e or µ) = 0.985 ± 0.030
ξ (e ) = 0.994 ± 0.040
ξ (µ) = 1.030 ± 0.059
η (e or µ) = 0.013 ± 0.020
η (µ) = 0.094 ± 0.073
(δξ )(e or µ) = 0.746 ± 0.021
(δξ )(e ) = 0.734 ± 0.028
(δξ )(µ) = 0.778 ± 0.037
ξ (π ) = 0.993 ± 0.022
ξ (ρ) = 0.994 ± 0.008
ξ (a1 ) = 1.001 ± 0.027
ξ (all hadroni modes) = 0.995 ± 0.007
τ + modes are harge onjugates of the modes below. \h ± " stands for
π ± or K ± . \ℓ" stands for e or µ. \Neutrals" stands for γ 's and/or π0 's.
τ − DECAY MODES

S ale fa tor/
p
Con den e level (MeV/ )

Fra tion ( i / )

Modes with one harged parti le
S=1.3
(85.35 ± 0.07 ) %
parti le− ≥ 0 neutrals ≥ 0K 0 ντ
(\1-prong")
0
−
parti le ≥ 0 neutrals ≥ 0K L ντ
(84.71 ± 0.08 ) %
S=1.3
µ− ν µ ντ
[g ℄ (17.41 ± 0.04 ) %
S=1.1
µ− ν µ ντ γ
[e ℄ ( 3.6 ± 0.4 ) × 10−3
e − ν e ντ
[g ℄ (17.83 ± 0.04 ) %
[e ℄ ( 1.75 ± 0.18 ) %
e − ν e ντ γ
h− ≥ 0K 0L ντ
(12.06 ± 0.06 ) %
S=1.2
(11.53 ± 0.06 ) %
S=1.2
h− ντ
π − ντ
[g ℄ (10.83 ± 0.06 ) %
S=1.2
[g ℄ ( 7.00 ± 0.10 ) × 10−3
S=1.1
K − ντ
h− ≥ 1 neutrals ντ
(37.10 ± 0.10 ) %
S=1.2
(36.58 ± 0.10 ) %
S=1.2
h− ≥ 1π 0 ντ (ex.K 0 )
h− π0 ντ
(25.95 ± 0.09 ) %
S=1.1
π − π 0 ντ
[g ℄ (25.52 ± 0.09 ) %
S=1.1
π − π 0 non-ρ(770) ντ
( 3.0 ± 3.2 ) × 10−3
[g ℄ ( 4.29 ± 0.15 ) × 10−3
K − π0 ντ
h− ≥ 2π 0 ντ
(10.87 ± 0.11 ) %
S=1.2
( 9.52 ± 0.11 ) %
S=1.1
h− 2π0 ντ
( 9.36 ± 0.11 ) %
S=1.2
h− 2π0 ντ (ex.K 0 )
π − 2π 0 ντ (ex.K 0 )
[g ℄ ( 9.30 ± 0.11 ) %
S=1.2
π − 2π 0 ντ (ex.K 0 ),
< 9
× 10−3 CL=95%
s alar
π − 2π 0 ντ (ex.K 0 ),
< 7
× 10−3 CL=95%
ve tor
[g ℄ ( 6.5 ± 2.3 ) × 10−4
K − 2π0 ντ (ex.K 0 )
h− ≥ 3π 0 ντ
( 1.35 ± 0.07 ) %
S=1.1
( 1.26 ± 0.07 ) %
S=1.1
h− ≥ 3π 0 ντ (ex. K 0 )
−
0
h 3π ντ
( 1.19 ± 0.07 ) %
π − 3π 0 ντ (ex.K 0 )
[g ℄ ( 1.05 ± 0.07 ) %
[g ℄ ( 4.8 ± 2.2 ) × 10−4
K − 3π0 ντ (ex.K 0 ,
η)
h− 4π0 ντ (ex.K 0 )
( 1.6 ± 0.4 ) × 10−3
h− 4π0 ντ (ex.K 0 ,η )
[g ℄ ( 1.1 ± 0.4 ) × 10−3
( 1.572 ± 0.033) %
S=1.1
K − ≥ 0π 0 ≥ 0K 0 ≥ 0γ ντ
K − ≥ 1 (π 0 or K 0 or γ ) ντ
S=1.1
( 8.72 ± 0.32 ) × 10−3

K 0S (parti les)− ντ
h− K 0 ντ
π − K 0 ντ
π− K 0
(non-K ∗ (892)− ) ντ
K − K 0 ντ
K − K 0 ≥ 0π 0 ντ
h− K 0 π0 ντ
π − K 0 π 0 ντ
K 0 ρ− ντ
K − K 0 π0 ντ
π − K 0 ≥ 1π 0 ντ

Modes with K 0 's
[g ℄

[g ℄

[g ℄
[g ℄

) × 10−3

(
(
(
(

9.2
1.00
8.4
5.4

± 0. 4

(
(
(
(
(
(
(

1.59
3.18
5.6
4.0
2.2
1.59
3.2

± 0.16 ) × 10−3
± 0.23 ) × 10−3
± 0.4 ) × 10−3

± 0.05 ) %
± 0.4
± 2. 1

) × 10−3
) × 10−4

) × 10−3
) × 10−3
± 0.20 ) × 10−3
± 1.0 ) × 10−3
± 0.4
± 0. 5

S=1.5
S=1.8
S=2.1

{
{
885
885
888
888
883
883
883
820

{
{

878
878
878
814

{

862
862
862
862
862
796

{
{

836
836
765
800
800
820

{
{

812
812
812
737
737
794
794
612
685

{

31

Lepton Summary Table
π − K 0 π 0 π 0 ντ
K − K 0 π0 π0 ντ
π − K 0 K 0 ντ
π − K 0S K 0S ντ
π − K 0S K 0L ντ
π − K 0 K 0 π 0 ντ
π − K 0S K 0S π 0 ντ
π − K 0S K 0L π 0 ντ
K − K 0S K 0S ντ
K − K 0S K 0S π0 ντ
K 0 h+ h− h− ≥ 0 neutrals
K 0 h+ h− h− ντ

( 2.6
1.6
( 1.7
[g ℄ ( 2.31
[g ℄ ( 1 . 2
( 3.1
( 1.60
( 3.1
< 6.3
< 4.0
< 1.7
( 2.3
<

ντ

2 4 ) × 10−4
× 10−4
± 0.4 ) × 10−3
± 0.17 ) × 10−4
± 0.4 ) × 10−3
± 2.3 ) × 10−4
± 0.30 ) × 10−4
± 1.2 ) × 10−4
× 10−7
× 10−7
× 10−3
± 2.0 ) × 10−4
± .

Modes with three harged parti les

h− h− h+ ≥ 0 neutrals ≥ 0K 0L ντ
h− h− h+ ≥ 0 neutrals ντ
(ex. K 0S → π+ π− )
(\3-prong")
h− h− h+ ντ
h− h− h+ ντ (ex.K 0 )
h− h− h+ ντ (ex.K 0 ,ω)
π − π + π − ντ
π − π + π − ντ (ex.K 0 )
π − π + π − ντ (ex.K 0 ),
non-axial ve tor
π − π + π − ντ (ex.K 0 ,ω )
h− h− h+ ≥ 1 neutrals ντ
h− h− h+ ≥ 1 π0 ντ (ex. K 0 )

h− h− h+ π0 ντ
h− h− h+ π0 ντ (ex.K 0 )
h− h− h+ π0 ντ (ex. K 0 , ω)
π − π + π − π 0 ντ
π − π + π − π 0 ντ (ex.K 0 )
π − π + π − π 0 ντ (ex.K 0 ,ω )
h− h− h+ ≥ 2π0 ντ (ex.
K 0)
h− h− h+ 2π0 ντ
h− h− h+ 2π0 ντ (ex.K 0 )
h− h− h+ 2π0 ντ (ex.K 0 ,ω,η)
h− h− h+ 3π0 ντ
2π− π+ 3π0 ντ (ex.K 0 )
2π− π+ 3π0 ντ (ex.K 0 , η ,
f1 (1285))
2π− π+ 3π0 ντ (ex.K 0 , η ,
ω , f1 (1285))
K − h+ h− ≥ 0 neutrals ντ
K − h+ π− ντ (ex.K 0 )
K − h+ π− π0 ντ (ex.K 0 )
K − π+ π− ≥ 0 neutrals ντ
K − π+ π− ≥
0π0 ντ (ex.K 0 )
K − π+ π− ντ
K − π+ π− ντ (ex.K 0 )
K − ρ0 ντ →
K − π+ π− ντ
K − π+ π− π0 ντ
K − π+ π− π0 ντ (ex.K 0 )
K − π+ π− π0 ντ (ex.K 0 ,η)
K − π+ π− π0 ντ (ex.K 0 ,ω)
K − π+ K − ≥ 0 neut. ντ
K − K + π− ≥ 0 neut. ντ
K − K + π− ντ
K − K + π− π0 ντ
K − K + K − ντ
K − K + K − ντ (ex. φ)
K − K + K − π0 ντ
π − K + π − ≥ 0 neut. ντ
e − e − e + ν e ντ
µ− e − e + ν µ ντ

(15.20 ± 0.08 ) %
(14.57 ± 0.07 ) %

( 9.80
( 9.46
( 9.42
( 9.31
( 9.02
< 2.4
[g ℄ ( 8.99
( 5.39
( 5.09
( 4.76
( 4.57
( 2.79
( 4.62
( 4.48
[g ℄ ( 2.70
( 5.21
( 5.08
( 4.98
[g ℄ ( 1 . 0
[g ℄ ( 2 . 3
( 2.1
( 1.7
<

5.8
( 6.35
( 4.38
( 8. 7
( 4.85
( 3.75

( 3.49
[g ℄ ( 2.94
( 1.4
( 1.35
( 8.1
[g ℄ ( 7 . 8
( 3.7
< 9
( 1.50
[g ℄ ( 1.44
[g ℄ ( 6 . 1
( 2.1
< 2.5
< 4.8
< 2.5
( 2.8
< 3.6

0 07 ) %
0 06 ) %
± 0.06 ) %
± 0.06 ) %
± 0.06 ) %
%
± .

± .

0 06 ) %
0 07 ) %
± 0.06 ) %
± 0.06 ) %
± 0.06 ) %
± 0.08 ) %
± 0.06 ) %
± 0.06 ) %
± 0.08 ) %
± 0.32 ) × 10−3
± 0.32 ) × 10−3
± 0.32 ) × 10−3
± 0.4 ) × 10−3
± 0.6 ) × 10−4
± 0.4 ) × 10−4
± 0.4 ) × 10−4
± .
± .

CL=95%
S=1.8
S=1.9
S=1.8
CL=90%
CL=90%
CL=95%
S=1.3
S=1.3

861
861

S=1.2
S=1.2
S=1.2
S=1.2
S=1.1
CL=95%

861
861
861
861
861
861

S=1.1
S=1.2
S=1.2
S=1.2
S=1.2
S=1.2
S=1.2
S=1.2
S=1.2

861

S=1.2

× 10 5 CL=90%
S=1.5
± 0.24 ) × 10−3
± 0.19 ) × 10−3
S=2.7
S=1.1
± 1.2 ) × 10−4
S=1.4
± 0.21 ) × 10−3
S=1.5
± 0.19 ) × 10−3
± 0.16 ) × 10 3
± 0.15 ) × 10−3
± 0.5 ) × 10−3
± 0.14 ) × 10−3
± 1.2 ) × 10−4
± 1.2 ) × 10−4
± 0.9 ) × 10−4
× 10−4
± 0.06 ) × 10−3
± 0.05 ) × 10−3
± 2.5 ) × 10−5
± 0.8 ) × 10−5
× 10−6
× 10−6
× 10−3
± 1.5 ) × 10−5
× 10−5

Modes with ve harged parti les
( 1.02 ± 0.04 ) × 10−3
3h− 2h+ ≥ 0 neutrals ντ
(ex. K 0S → π− π+ )
(\5-prong")
[g ℄ ( 8.39 ± 0.35 ) × 10−4
3h− 2h+ ντ (ex.K 0 )
( 8.3 ± 0.4 ) × 10−4
3π− 2π+ ντ (ex.K 0 , ω )
( 7.7 ± 0.4 ) × 10−4
3π− 2π+ ντ (ex.K 0 , ω ,
f1 (1285))

{
{

834
834
834
834
834
834

{

797
797
797
749
749

{

−

−

763
619
682
682
682
614
614
614
466
337
760
760

S=1.9
S=2.2

CL=95%
S=1.8
S=1.9
S=1.4
S=5.4
CL=90%
CL=90%
CL=95%

{

794
794
763
794
794
794
794

{

763
763
763
763
685
685
685
618
471

{

CL=90%

345
794
888
885

S=1.1

794

S=1.1

794
794

{

K − 2π− 2π+ ντ
K + 3π− π+ ντ
K + K − 2π− π+ ντ
3h− 2h+ π0 ντ (ex.K 0 )
3π− 2π+ π0 ντ (ex.K 0 )
3π− 2π+ π0 ντ (ex.K 0 , η ,
f1 (1285))
3π− 2π+ π0 ντ (ex.K 0 , η ,
ω , f1 (1285))
K − 2π− 2π+ π0 ντ
+
K 3π− π+ π0 ντ
3h− 2h+ 2π0 ντ

2. 4
× 10−6 CL=90%
5. 0
× 10−6 CL=90%
< 4. 5
× 10−7 CL=90%
[g ℄ ( 1.78 ± 0.27 ) × 10−4
( 1.65 ± 0.10 ) × 10−4
( 1.11 ± 0.10 ) × 10−4
( 3.6 ± 0.9 ) × 10−5

715
715
528
746
746

10−6 CL=90%
10−7 CL=90%
× 10−6 CL=90%

657
657
687

<
<

<
<
<

1. 9
8
3. 4

×
×

Mis ellaneous other allowed modes
( 7.6 ± 0.5 ) × 10−3
(5π )− ντ
+
−
< 3. 0
× 10−7
4h 3h ≥ 0 neutrals ντ
(\7-prong")
< 4. 3
× 10−7
4h− 3h+ ντ
4h− 3h+ π0 ντ
< 2. 5
× 10−7
X − (S=− 1) ντ
( 2.87 ± 0.07 ) %
( 1.42 ± 0.18 ) %
K ∗ (892)− ≥ 0 neutrals ≥
0K 0L ντ
( 1.20 ± 0.07 ) %
K ∗ (892)− ντ
( 7.9 ± 0.5 ) × 10−3
K ∗ (892)− ντ → π− K 0 ντ
( 3.2 ± 1.4 ) × 10−3
K ∗ (892)0 K − ≥ 0 neutrals ντ
K ∗ (892)0 K − ντ
( 2.1 ± 0.4 ) × 10−3
K ∗ (892)0 π− ≥ 0 neutrals ντ
( 3.8 ± 1.7 ) × 10−3
K ∗ (892)0 π− ντ
( 2.2 ± 0.5 ) × 10−3
( 1.0 ± 0.4 ) × 10−3
( K ∗ (892) π )− ντ →
π − K 0 π 0 ντ
K1 (1270)− ντ
K1 (1400)− ντ

( 4.7
( 1.7
( 1.5
K ∗ (1410)− ντ
< 5
K ∗0 (1430)− ντ
K ∗2 (1430)− ντ
< 3
η π− ντ
< 9. 9
η π− π 0 ντ
[g ℄ ( 1.39
η π− π 0 π 0 ντ
( 1.81
η K − ντ
[g ℄ ( 1.52
η K ∗ (892)− ντ
( 1.38
η K − π 0 ντ
( 4.8
−
0
∗
η K π (non-K (892)) ντ
< 3. 5
η K 0 π − ντ
( 9.3
η K 0 π − π 0 ντ
< 5. 0
η K − K 0 ντ
< 9. 0
η π+ π − π − ≥ 0 neutrals ντ
< 3
+
−
−
0
η π π π ντ (ex.K )
( 2.25
η π− π + π − ντ (ex.K 0 ,f1 (1285)) ( 9.9
η a1 (1260)− ντ → η π− ρ0 ντ
< 3. 9
η η π− ντ
< 7. 4
η η π− π 0 ντ
< 2. 0
−
η η K ντ
< 3. 0
η ′ (958) π − ντ
< 4. 0
η ′ (958) π − π 0 ντ
< 1. 2
< 2. 4
η ′ (958) K − ντ
φπ− ντ
( 3.4
−
φ K ντ
( 3.70
( 3.9
f1 (1285) π− ντ
f1 (1285) π− ντ →
( 1.18
η π− π + π − ντ
−
( 5.2
f1 (1285) π ντ →
3π− 2π+ ντ
π (1300)− ντ → (ρπ )− ντ →
< 1. 0
(3π )− ντ
π (1300)− ντ →
((π π )S −wave π )− ντ →
(3π )− ντ
h− ω ≥ 0 neutrals ντ

h − ω ντ
K − ω ντ
h− ω π0 ντ
h− ω 2π0 ντ
π − ω 2π 0 ντ
h− 2ω ντ
2h− h+ ω ντ
2π − π + ω ν τ

<

1 1 ) × 10−3
2 6 ) × 10−3
+1.4 ) × 10−3
− 1. 0
× 10−4
× 10−3
× 10−5
± 0.10 ) × 10−3
± 0.31 ) × 10−4
± 0.08 ) × 10−4
± 0.15 ) × 10−4
± 1.2 ) × 10−5
× 10−5
± 1.5 ) × 10−5
× 10−5
× 10−6
× 10−3
± 0.13 ) × 10−4
± 1.6 ) × 10−5
× 10−4
× 10−6
× 10−4
× 10−6
× 10−6
× 10−5
× 10−6
± 0.6 ) × 10−5
± 0.33 ) × 10−5
± 0.5 ) × 10−4
± 0.07 ) × 10−4
± 0.5 ) × 10−5
± .
± .

S=1.8

665

682
612

{

{

542
542
655
655

{

S=1.7
CL=95%
CL=95%
CL=95%
S=1.4

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=95%
CL=90%
CL=90%
CL=90%
CL=90%
S=1.3
S=1.9
S=1.3

0 09 ) %
S=1.2
0 08 ) %
S=1.3
0 9 ) × 10−4
± 0.4 ) × 10−3
± 0.5 ) × 10−4
± 1.7 ) × 10−5
× 10−7 CL=90%
± 0.22 ) × 10−4
± 0.7 ) × 10−5
± .
± .

800
682

665

10−4 CL=90%
× 10−4 CL=90%
± .

{

CL=90%
CL=90%
S=1.3
S=1.4

×

1. 9

( 2.41
[g ℄ ( 2.00
( 4.1
[g ℄ ( 4.1
( 1.4
( 7.3
< 5. 4
( 1.20
( 8.4

CL=90%

{

433
335
326
317
316
797
778
746
719
511
665

{

661
590
430
743
743

{
{

637
559
382
620
591
495
585
445
408

{
{

{
{

708
708
610
684
644
644
249
641
641

32

Lepton Summary Table
Lepton Family number (LF ), Lepton number (L),
or Baryon number (B) violating modes

means lepton number violation ( τ − → + π− π−). Following
ommon usage, means lepton family violation
lepton number
violation ( τ − → − π+ π− ). means baryon number violation.
< 3. 3
× 10−8 CL=90%
e− γ
µ− γ
< 4. 4
× 10−8 CL=90%
e − π0
< 8.0
× 10−8 CL=90%
µ− π 0
< 1.1
× 10−7 CL=90%
e− K 0
< 2.6
× 10−8 CL=90%
µ− K 0
< 2.3
× 10−8 CL=90%
e− η
< 9.2
× 10−8 CL=90%
µ− η
< 6.5
× 10−8 CL=90%
e − ρ0
< 1.8
× 10−8 CL=90%
µ− ρ0
< 1.2
× 10−8 CL=90%
e− ω
< 4.8
× 10−8 CL=90%
µ− ω
< 4.7
× 10−8 CL=90%
e − K ∗ (892)0
< 3.2
× 10−8 CL=90%
µ− K ∗ (892)0
< 5.9
× 10−8 CL=90%
e − K ∗ (892)0
< 3.4
× 10−8 CL=90%
µ− K ∗ (892)0
< 7.0
× 10−8 CL=90%
e − η′ (958)
< 1.6
× 10−7 CL=90%
µ− η ′ (958)
< 1.3
× 10−7 CL=90%
e − f0 (980) → e − π+ π−
< 3.2
× 10−8 CL=90%
µ− f0 (980) → µ− π + π −
< 3.4
× 10−8 CL=90%
< 3. 1
× 10−8 CL=90%
e− φ
µ− φ
< 8.4
× 10−8 CL=90%
< 2.7
× 10−8 CL=90%
e− e+ e−
e − µ+ µ−
< 2.7
× 10−8 CL=90%
e + µ− µ−
< 1.7
× 10−8 CL=90%
µ− e + e −
< 1.8
× 10−8 CL=90%
µ+ e − e −
< 1.5
× 10−8 CL=90%
µ− µ+ µ−
< 2.1
× 10−8 CL=90%
e − π+ π−
< 2.3
× 10−8 CL=90%
< 2.0
× 10−8 CL=90%
e + π− π−
µ− π + π −
< 2.1
× 10−8 CL=90%
µ+ π − π −
< 3.9
× 10−8 CL=90%
e − π+ K −
< 3.7
× 10−8 CL=90%
< 3.1
× 10−8 CL=90%
e − π− K +
e + π− K −
< 3.2
× 10−8 CL=90%
< 7.1
× 10−8 CL=90%
e− K 0 K 0
< 3.4
× 10−8 CL=90%
e− K + K −
< 3.3
× 10−8 CL=90%
e+ K − K −
µ− π + K −
< 8.6
× 10−8 CL=90%
µ− π − K +
< 4.5
× 10−8 CL=90%
µ+ π − K −
< 4.8
× 10−8 CL=90%
µ− K 0 K 0
< 8.0
× 10−8 CL=90%
µ− K + K −
< 4.4
× 10−8 CL=90%
µ+ K − K −
< 4.7
× 10−8 CL=90%
< 6.5
× 10−6 CL=90%
e − π0 π0
µ− π 0 π 0
< 1.4
× 10−5 CL=90%
< 3.5
× 10−5 CL=90%
e− η η
µ− η η
< 6.0
× 10−5 CL=90%
< 2.4
× 10−5 CL=90%
e − π0 η
µ− π 0 η
< 2.2
× 10−5 CL=90%
,
< 4.4
× 10−7 CL=90%
p µ− µ−
p µ+ µ−
,
< 3.3
× 10−7 CL=90%
pγ
,
< 3. 5
× 10−6 CL=90%
p π0
< 1.5
× 10−5 CL=90%
,
,
p 2π0
< 3.3
× 10−5 CL=90%
pη
,
< 8.9
× 10−6 CL=90%
p π0 η
,
< 2.7
× 10−5 CL=90%
,
< 7.2
× 10−8 CL=90%
 π−
 π−
,
< 1.4
× 10−7 CL=90%
< 2.7
× 10−3 CL=95%
e − light boson
µ− light boson
< 5
× 10−3 CL=95%
L

e

e.g.

LF

e.g.

and not

e

B

LF
LF

LF

LF

LF

S

LF

S

LF
LF

LF
LF

LF
LF

LF

LF

LF

LF

LF
LF

LF
LF

LF
LF

LF
LF
LF
LF
LF
LF
LF
L

LF
L

LF

LF
L

S

S

LF
LF
L

LF

LF
L

S

S

Neutrino Properties

LF

LF
L

LF
LF

LF
LF

LF
LF

L B
L B

L B

L B
L B

L B

L B

L B
L B
LF

LF

888
885
883
880
819
815
804
800
719
715
716
711
665
659
665
659
630
625

{
{

596
590
888
882
882
885
885
873
877
877
866
866
813
813
813
736
738
738
800
800
800
696
699
699
878
867
699
653
798
784
618
618
641
632
604
475
360
525
525

{
{

See the note on \Neutrino properties listings" in the Parti le Listings.
Mass m < 2 eV (tritium de ay)
Mean life/mass, τ /m > 300 s/eV, CL = 90% (rea tor)
Mean life/mass, τ /m > 7 × 109 s/eV (solar)
Mean life/mass, τ /m > 15.4 s/eV, CL = 90% (a elerator)
Magneti moment µ < 0.29 × 10−10 µ , CL = 90% (rea tor)
B

Number of Neutrino Types

Number N = 2.984 ± 0.008 (Standard Model ts to LEP data)
Number N = 2.92 ± 0.05 (S = 1.2) (Dire t measurement of
invisible Z width)
Neutrino Mixing

The following values are obtained through data analyses based on
the 3-neutrino mixing s heme des ribed in the review \Neutrino
Mass, Mixing, and Os illations" by K. Nakamura and S.T. Pet ov
in this Review.
sin2 (2θ12) = 0.846 ± 0.021
m221 = (7.53 ± 0.18) × 10−5 eV2
.001
(normal mass hierar hy)
sin2 (2θ23) = 0.999 +0
− 0.018
.000
sin2 (2θ23) = 1.000 +0
(inverted mass hierar hy)
− 0.017
m232 = (2.44 ± 0.06) × 10−3 eV2 [ ℄ (normal mass hierar hy)
m232 = (2.52 ± 0.07) × 10−3 eV2 [ ℄ (inverted mass hierar hy)
sin2 (2θ13) = (9.3 ± 0.8) × 10−2
Stable Neutral Heavy Lepton Mass Limits
Mass m > 45.0 GeV, CL = 95% (Dira )
Mass m > 39.5 GeV, CL = 95% (Majorana)
Neutral Heavy Lepton Mass Limits
Mass m > 90.3 GeV, CL = 95%
(Dira ν oupling to e , µ, τ ; onservative ase(τ ))
Mass m > 80.5 GeV, CL = 95%
(Majorana ν oupling to e , µ, τ ; onservative ase(τ ))
i

i

L

L

NOTES
In this Summary Table:
When a quantity has \(S = . . .)" to its right, the errorpon the quantity has
been enlarged by the \s ale fa tor" S, de ned as S = χ2/(N − 1), where
N is the number of measurements used in al ulating the quantity. We do
this when S > 1, whi h often indi ates that the measurements are in onsistent. When S > 1.25, we also show in the Parti le Listings an ideogram of
the measurements. For more about S, see the Introdu tion.
A de ay momentum p is given for ea h de ay mode. For a 2-body de ay, p
is the momentum of ea h de ay produ t in the rest frame of the de aying
parti le. For a 3-or-more-body de ay, p is the largest momentum any of the
produ ts an have in this frame.
[a℄ This is the best limit for the24mode e − → ν γ . The best limit for \ele tron
disappearan e" is 6.4 × 10 yr.
[b℄ See the \Note on Muon De ay Parameters" in the µ Parti le Listings for
de nitions and details.
[ ℄ Pµ is the longitudinal polarization of the muon from pion de ay. In
standard V −A theory, Pµ = 1 and ρ = δ = 3/4.
[d ℄ This only in ludes events with the γ energy > 10 MeV. Sin e the e − ν νµ
and e − ν νµ γ modes annot be learly separated, we regard the latter
mode as a subset of the former.
[e ℄ See the relevant Parti le Listings for the energy limits used in this measurement.
[f ℄ A test of additive vs. multipli ative lepton family number onservation.
[g ℄ Basis mode for the τ .
[h℄ L± mass limit depends on de ay assumptions; see the Full Listings.
[i ℄ The sign of m232 is not known at this time. The range quoted is for
the absolute value.
e

e

Heavy Charged Lepton Sear hes

L± {

harged lepton
Mass m > 100.8 GeV, CL = 95% [ ℄ De ay to ν W .
L± { stable harged heavy lepton
Mass m > 102.6 GeV, CL = 95%
h

33

Quark Summary Table
QUARKS

b′ (4th Generation) Quark, Sear

The u -, d -, and s -quark masses are estimates of so- alled \ urrentquark masses," in a mass-independent subtra tion s heme su h as
MS at a s ale µ ≈ 2 GeV. The - and b -quark masses are the
\running" masses in the MS s heme. For the b -quark we also
quote the 1S mass. These an be di erent from the heavy quark
masses obtained in potential models.

Mass m >
Mass m >
Mass m >
Mass m >

0.7
m u = 2.3 +
− 0.5 MeV

Charge = 32 e

m u /m d = 0.38{0.58

190 GeV, CL = 95% (p p , quasi-stable b ′ )
400 GeV, CL = 95% (p p , neutral- urrent de ays)
675 GeV, CL = 95% (p p , harged- urrent de ays)
46.0 GeV, CL = 95% (e + e − , all de ays)

t ′ (4th Generation) Quark, Sear

I (J P ) = 21 ( 21 + )

u

hes for

hes for

Mass m > 782 GeV, CL = 95%
Mass m > 700 GeV, CL = 95%

Iz = + 21

(p p , neutral- urrent de ays)
(p p , harged- urrent de ays)

Free Quark Sear hes

I (J P ) = 21 ( 21 + )

d
+ 0.5 MeV
= 4.8 −
0. 3

Charge = − 13 e

All sear hes sin e 1977 have had negative results.

Iz = − 12

md
m s /m d = 17{22
+ 0.7 MeV
m = (m u +m d )/2 = 3.5 −
0.2

NOTES
[a℄ A dis ussion of the de nition of the top quark mass in these measurements an be found in the review \The Top Quark."
[b ℄ Based on published top mass√measurements using data from Tevatron
Run-I and Run-II and LHC at s = 7 TeV. In luding the most re ent unpublished results from Tevatron Run-II, the Tevatron Ele troweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note \The
Top Quark' in the Quark Parti le Listings of this Review.
[ ℄ ℓ means e or µ de ay mode, not the sum over them.
[d ℄ Assumes lepton universality and W -de ay a eptan e.
[e ℄ This limit is for (t → γ q )/ (t → W b ).
[f ℄ This limit is for (t → Z q )/ (t → W b ).

I (J P ) = 0( 12 + )

s

m s = 95 ± 5 MeV Charge = − 13 e Strangeness = −1
m s / ((m u + m d )/2) = 27.5 ± 1.0
I (J P ) = 0( 12 + )

Charge = 23 e

m = 1.275 ± 0.025 GeV

Charm = +1

I (J P ) = 0( 12 + )

b

Charge = − 13 e

Bottom = −1

m b (MS) = 4.18 ± 0.03 GeV
m b (1S) = 4.66 ± 0.03 GeV
I (J P ) = 0( 12 + )

t

Charge = 32 e

Top = +1

Mass (dire t measurements) m = 173.21 ± 0.51 ± 0.71 GeV [a,b℄
+ 5 GeV [a℄
Mass (MS from ross-se tion measurements) m = 160 −
4
4. 0
Mass (Pole from ross-se tion measurements) m = 176.7 +
− 3.4
GeV
m t − m t = − 0.2 ± 0.5 GeV (S = 1.1)
Full
¡ width
¢ ¡ = 2.0 ± 0.5 GeV¢
W b / W q (q = b , s , d ) = 0.91 ± 0.04
t-quark EW Couplings
F0 = 0.690 ± 0.030
F− = 0.314 ± 0.025
F+ = 0.008 ± 0.016
FV +A < 0.29, CL = 95%
t

DECAY MODES

Fra tion ( i / )

W q (q = b , s , d )
Wb
ℓ νℓ anything
γ q (q =u , )
Z q (q =u , )

[

p

Con den e level (MeV/ )

℄ (9.4 ± 2.4) %
[e ℄ < 5 . 9
× 10−3

95%

{
{
{
{

95%

{

,d

T = 1 weak neutral urrent (T1 ) modes
T1

[f ℄ < 2.1

× 10−3

MesonSummaryTable
34

S

C

I G (J PC ) = 0+(0 − + )

η

LIGHT UNFLAVORED MESONS
( =
=
= 0)
√
For I = 1 (π , b , ρ, a): ud , (uu −dd )/ 2, du ;
for I = 0 (η , η′ , h, h′ , ω , φ, f , f ′ ): 1 (u u + d d ) + 2 (s s )

B

Mass m = 547.862 ± 0.018 MeV
Full width = 1.31 ± 0.05 keV

C-non onserving de ay parameters
π+ π− π0
π+ π− π0
π+ π− π0
π+ π− γ
π+ π− γ

I G (J P ) = 1− (0− )

π±

Mass m = 139.57018 ± 0.00035 MeV (S = 1.2)
Mean life τ = (2.6033 ± 0.0005) × 10−8 s (S = 1.2)
τ = 7.8045 m
π ± → ℓ± ν γ form fa tors [a℄

CP-non onserving de ay parameters
π + π − e + e − de ay-plane asymmetry Aφ = (− 0.6 ± 3.1) × 10−2
Dalitz plot parameter
π0 π0 π0
α = − 0.0315 ± 0.0015

FV = 0.0254 ± 0.0017
FA = 0.0119 ± 0.0001
FV slope parameter a = 0.10 ± 0.06
009
R = 0.059 +− 00..008

η DECAY MODES

π − modes are harge onjugates of the modes below.

For de ay limits to parti les whi h are not established, see the se tion on
Sear hes for Axions and Other Very Light Bosons.
π + DECAY MODES

µ+ νµ
µ+ νµ γ
e + νe
e + νe γ
e + νe π0
e + νe e + e −
e + νe ν ν

[b ℄
[ ℄
[b ℄
[ ℄

Fra tion ( i / )

p

Con den e level (MeV/ )

(99.98770 ± 0.00004) %
( 2.00 ± 0.25 ) × 10−4
( 1.230 ± 0.004 ) × 10−4
( 7.39 ± 0.05 ) × 10−7
( 1.036 ± 0.006 ) × 10−8
( 3.2
± 0.5
) × 10−9
< 5
× 10−6 90%

Lepton Family number (LF) or Lepton number (L) violating modes
× 10−3 90%
L
[d ℄ < 1.5
LF
[d ℄ < 8.0
× 10−3 90%
LF
< 1. 6
× 10−6 90%

µ+ ν e
µ+ νe
µ− e + e + ν

30
30
70
70
4
70
70
30
30
30

I G (J PC ) = 1− (0 − + )

0

π

Mass m = 134.9766 ± 0.0006 MeV (S = 1.1)
m π± − m π0 = 4.5936 ± 0.0005 MeV
Mean life τ = (8.52 ± 0.18) × 10−17 s (S = 1.2)
τ = 25.5 nm
For de ay limits to parti les whi h are not established, see the appropriate
Sear h se tions (A0 (axion) and Other Light Boson (X 0 ) Sear hes, et .).
π 0 DECAY MODES

2γ

e+ e− γ

γ positronium

e+ e+ e− e−
e+ e−

4γ
νν
νe ν e
νµ ν µ
ντ ν τ
γνν

Fra tion ( i / )

S ale fa tor/
p
Con den e level (MeV/ )

(98.823 ± 0.034) %
( 1.174 ± 0.035) %
( 1.82 ± 0.29 ) × 10−9
( 3.34 ± 0.16 ) × 10−5
( 6.46 ± 0.33 ) × 10−8
< 2
× 10−8
[e ℄ < 2.7
× 10−7
< 1.7
× 10−6
< 1.6
× 10−6
< 2.1
× 10−6
< 6
× 10−4

S=1.5
S=1.5

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

0.11
−2
left-right asymmetry = (0.09 +
− 0.12 ) × 10
0.10 ) × 10−2
sextant asymmetry = (0.12 +
− 0.11
quadrant asymmetry = (− 0.09 ± 0.09) × 10−2
left-right asymmetry = (0.9 ± 0.4) × 10−2
β (D-wave) = − 0.02 ± 0.07 (S = 1.3)

67
67
67
67
67
67
67
67
67
67
67

Charge onjugation (C ) or Lepton Family number (LF ) violating modes
67
C
< 3. 1
× 10−8 CL=90%
26
µ+ e −
LF
< 3.8
× 10−10 CL=90%
26
µ− e +
LF
< 3.4
× 10−9 CL=90%
26
µ+ e − + µ− e +
LF
< 3.6
× 10−10 CL=90%

neutral modes
2γ
3π 0
π 0 2γ
2 π 0 2γ
4γ
invisible
harged modes
π+ π− π0
π+ π− γ
e+ e− γ
µ+ µ− γ

Fra tion ( i / )

S ale fa tor/
p
Con den e level (MeV/ )

Neutral modes

(72.12 ± 0.34) %
(39.41 ± 0.20) %
(32.68 ± 0.23) %
( 2.7 ± 0.5 ) × 10−4
< 1.2
× 10−3
< 2.8
× 10−4
< 1. 0
× 10−4

S=1.2
S=1.1
S=1.1
S=1.1
CL=90%
CL=90%
CL=90%

Charged modes
(28.10 ± 0.34) %
(22.92 ± 0.28) %
( 4.22 ± 0.08) %
( 6.9 ± 0.4 ) × 10−3
( 3.1 ± 0.4 ) × 10−4
× 10−6
< 5. 6
( 5.8 ± 0.8 ) × 10−6
( 2.40 ± 0.22) × 10−5
( 2.68 ± 0.11) × 10−4
< 1. 6
× 10−4
< 3. 6
× 10−4
< 3. 6
× 10−4
< 1. 7
× 10−4
< 2.1
× 10−3
< 5
× 10−4
< 3
× 10−6

S=1.2
S=1.2
S=1.1
S=1.3

{

274
179
257
238
274

{

{

CL=90%
CL=90%

174
236
274
253
274
253
274
235
253
161
113
256
236
174
210

Charge onjugation (C ), Parity (P ),
Charge onjugation × Parity (CP ), or
Lepton Family number (LF ) violating modes
π0 γ
C
< 9
× 10−5
CL=90%
CL=90%
π+ π−
P,CP
< 1. 3
× 10−5
< 3. 5
× 10−4
2π0
P,CP
CL=90%
CL=90%
C
< 5
× 10−4
2π0 γ
CL=90%
3π0 γ
C
< 6
× 10−5
3γ
CL=90%
C
< 1.6
× 10−5
0
P,CP
CL=90%
< 6. 9
× 10−7
4π
CL=90%
π0 e + e −
C
[f ℄ < 4
× 10−5
CL=90%
π 0 µ+ µ−
C
[f ℄ < 5
× 10−6
µ+ e − + µ− e +
LF
< 6
× 10−6
CL=90%

257
236
238
238
179
274
40
257
210
264

e+ e−

µ+ µ−

2e + 2e −
π + π − e + e − (γ )
e + e − µ+ µ−
2µ+ 2µ−
µ+ µ− π + π −
π+ e − ν e + . .
π + π − 2γ
π+ π− π0 γ
π 0 µ+ µ− γ

f0 (500) or
was

σ [g ℄

0 (600)

f

CL=90%

CL=90%
CL=90%
CL=90%
CL=90%

I G (J PC ) = 0+(0 + +)

Mass m = (400{550) MeV
Full width = (400{700) MeV

3γ

f0 (500) DECAY MODES

Fra tion ( i / )

ππ
γγ

dominant
seen

p (MeV/ )
{
{

MesonSummaryTable
35

I G (J PC ) = 1+(1 − − )

ρ(770) [h℄

Mass m = 775.26 ± 0.25 MeV
Full width = 149.1 ± 0.8 MeV
ee = 7.04 ± 0.06 keV
ρ(770) DECAY MODES

Fra tion ( i / )

ππ

∼ 100

π± γ
π± η
π± π+ π− π0

( 4.5 ± 0.5
< 6
< 2.0

%

ρ(770)± de ays

π+ π− γ
π0 γ
ηγ
π0 π0 γ
µ+ µ−

(
(
(
(
(
(

[i ℄
[i ℄

e+ e−

π+ π− π0

(

π+ π− π+ π−
π+ π− π0 π0
π0 e + e −

(
(
<

S ale fa tor/
p
Con den e level (MeV/ )
363

) × 10−4
× 10−3
× 10−3

ρ(770)0 de ays
9.9 ± 1.6
) × 10−3
6.0 ± 0.8
) × 10−4
3.00 ± 0.20
) × 10−4
4.5 ± 0.8
) × 10−5
4.55 ± 0.28
) × 10−5
4.72 ± 0.05
) × 10−5
+0.54 ± 0.34) × 10−4
1.01 −
0.36
1.8 ± 0.9
) × 10−5
1.6 ± 0.8
) × 10−5
1.2
× 10−5

Mass m = 782.65 ± 0.12 MeV (S = 1.9)
Full width = 8.49 ± 0.08 MeV
ee = 0.60 ± 0.02 keV
ω (782) DECAY MODES

π+ π− π0
π0 γ
π+ π−

neutrals (ex luding π0 γ )

362
376
194
363
373
388
323

CL=90%

251
257
376

π + e − νe + . .
γ e+ e−
π0 γ γ
4π0
e+ e−

invisible

Fra tion ( i / )

S ale fa tor/
p
Con den e level (MeV/ )

(89.2 ± 0.7 ) %
( 8.28 ± 0.28) %
.11
( 1.53 +0
− 0.13 ) %
+8
( 8 − 5 ) × 10−3
( 4.6 ± 0.4 ) × 10−4
( 7.7 ± 0.6 ) × 10−4
( 1.3 ± 0.4 ) × 10−4
( 7.28 ± 0.14) × 10−5
< 2
× 10−4
< 3. 6
× 10−3
< 1
× 10−3
( 6.6 ± 1.1 ) × 10−5
< 3.3
× 10−5
( 9.0 ± 3.1 ) × 10−5
< 1. 9
× 10−4

S=2.1

327
380

S=1.2

366

S=1.1

{

CL=95%

200
380
349
391
262
366
256
367
162
377
391

Charge onjugation (C ) violating modes
C
CL=90%
< 2.1
× 10−4
C
CL=90%
< 2.1
× 10−4
−
4
< 2.3
× 10
CL=90%
C

162
367
330

e+ e−

π+ π− π0 π0
π+ π− γ
π+ π− π+ π−
π0 π0 γ
η π0 γ
µ+ µ−
3γ

S=2.1
S=1.3
CL=90%
CL=95%
CL=90%
CL=90%

Mass m = 957.78 ± 0.06 MeV
Full width = 0.198 ± 0.009 MeV
η′ (958) DECAY MODES

π+ π− η
ρ0 γ (in luding non-resonant
π+ π− γ )
π0 π0 η
ωγ
γγ
3π 0
µ+ µ− γ
π + π − µ+ µ−
π+ π− π0
π 0 ρ0

p

Fra tion ( i / )

Con den e level (MeV/ )

(42.9 ± 0.7 ) %
(29.1 ± 0.5 ) %
(22.2 ± 0.8 ) %
( 2.75 ± 0.23) %
( 2.20 ± 0.08) %
( 2.14 ± 0.20) × 10−3
( 1.08 ± 0.27) × 10−4
< 2.9
× 10−5
( 3.8 ± 0.4 ) × 10−3
< 4

%

× 10−5

90%
90%
95%
90%
95%
90%

.3
−3
( 2.4 +1
− 1.0 ) × 10
−
< 2. 1
× 10 4
× 10−4
< 9
< 8
× 10−4
< 5
× 10−4
< 2. 1
× 10−7
< 5
× 10−4

90%
90%
90%
90%
90%
90%

469
479
469
380
479

90%
90%
90%
90%
90%
90%
90%
90%

458
459
469
322
479
445
273
473

< 2. 5
< 1

%

× 10−3

< 1. 9
< 1

%

< 3.1

π+ π−
π0 π0
π0 e + e −
η e+ e−
3γ
µ+ µ− π 0
µ+ µ− η
eµ

f0 (980) [j ℄

372
376

{

298
197
189
458

Charge onjugation (C ), Parity (P ),
Lepton family number (LF ) violating modes
P,CP
< 6
× 10−5
P,CP
< 4
× 10−4
C
[f ℄ < 1.4
× 10−3
C
[f ℄ < 2.4
× 10−3
C
< 1.0
× 10−4
C
[f ℄ < 6.0
× 10−5
C
[f ℄ < 1 . 5
× 10−5
LF
< 4.7
× 10−4

{

I G (J PC ) = 0+(0 + +)

f0 (980) DECAY MODES

Fra tion ( i / )

ππ

dominant
seen
seen

KK
γγ

a0 (980) [j ℄

232
165

90%
90%

239
159
479
430
467
401
428
111

p (MeV/ )
476
36
495

I G (J PC ) = 1− (0 + +)

Mass m = 980 ± 20 MeV
Full width = 50 to 100 MeV
a0 (980) DECAY MODES

Fra tion ( i / )

ηπ

dominant
seen
seen

KK
γγ

p (MeV/ )
319
†

490

I G (J PC ) = 0− (1 − − )

φ(1020)

Mass m = 1019.461 ± 0.019 MeV (S = 1.1)
Full width = 4.266 ± 0.031 MeV (S = 1.2)
φ(1020) DECAY MODES

K+K−
K 0L K 0S

ρπ + π+ π − π 0
ηγ
π0 γ
ℓ+ ℓ−

I G (J PC ) = 0+(0 − + )

η ′ (958)

× 10−4
× 10−3

< 2.4

Mass m = 990 ± 20 MeV
Full width = 40 to 100 MeV

S=1.1

ηγ
π0 e + e −
π 0 µ+ µ−

η π0

375
152
254

π+ π− e + e −

I G (J PC ) = 0− (1 − − )

ω (782)

2π0
3π0

S=2.2
CL=84%
CL=84%

2(π+ π− )
π + π − 2π 0
2(π+ π− ) neutrals
2(π+ π− ) π0
2(π+ π− )2π0
3(π+ π− )

e+ e−

µ+ µ−

η e+ e−
π+ π−
ω π0

ωγ
ργ
π+ π− γ
f0 (980) γ
π0 π0 γ
π+ π− π+ π−
π+ π+ π− π− π0
π0 e + e −
π0 η γ

S ale fa tor/
p
Con den e level (MeV/ )

Fra tion ( i / )

(48.9 ± 0.5 ) %
(34.2 ± 0.4 ) %
(15.32 ± 0.32 ) %
( 1.309 ± 0.024) %
( 1.27 ± 0.06 ) × 10−3
|
( 2.954 ± 0.030) × 10−4
( 2.87 ± 0.19 ) × 10−4
( 1.15 ± 0.10 ) × 10−4
( 7.4 ± 1.3 ) × 10−5
( 4.7 ± 0.5 ) × 10−5
< 5

%

S=1.1
S=1.1
S=1.1
S=1.2

S=1.1

CL=84%

× 10−5 CL=90%
± 1.3 ) × 10−5
( 3.22 ± 0.19 ) × 10−4
S=1.1
( 1.13 ± 0.06 ) × 10−4

< 1. 2
( 4.1

( 4.0

+2.8 ) × 10−6
− 2. 2

< 4. 6
× 10−6 CL=90%
( 1.12 ± 0.28 ) × 10−5
( 7.27 ± 0.30 ) × 10−5
S=1.5

127
110

{

363
501
510
510
499
363
490
172
209
215
490
29
492
410
342
501
346

MesonSummaryTable
36

a0 (980) γ
K0K0γ

) × 10−5
× 10−8
( 6.25 ± 0.21 ) × 10−5
< 2
× 10−5
( 1.4 ± 0.5 ) × 10−5
< 1. 2
× 10−4
< 1.8
× 10−5
< 9.4
× 10−6
× 10−6
< 1
( 7.6

± 0. 6

< 1.9

η ′ (958) γ
η π0 π0 γ
µ+ µ− γ
ργ γ
η π+ π−
η µ+ µ−
η U → η e+ e−

39
110
60
293
499
215
288
321

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

{

Lepton Faminly number (LF) violating modes

e ± µ∓

LF

h1 (1170)

< 2

× 10−6 CL=90%

504

ρπ

seen

b1 (1235)

308

I G (J PC ) = 1+(1 + − )

ωπ

Fra tion ( i / )

φπ

a1 (1260) [k ℄

π0 π0 π+ π−

2 π + 2π −
ρ0 ρ0

a0 (980) π [ignoring a0 (980) →
K K℄
η π π [ex luding a0 (980) π ℄
KKπ
K K ∗ (892)

π+ π− π0
ρ± π ∓
γ ρ0
φγ

p

dominant

K ∗ (892)± K ∓
(KK )± π0
K 0S K 0L π±
K 0S K 0S π±

+ 2.1 ) %
(33.1 −
1. 8
1. 4
(22.0 +
− 1. 2 ) %
+
(11.0 − 00..67 ) %
0. 7
(11.0 +
− 0. 6 ) %
seen
< 7
× 10−4
(35 ± 15 ) %
1.9
(52.4 +
− 2. 2 ) %
(36 ± 7 ) %

Con den e level (MeV/ )
348

[D/S amplitude ratio = 0.277 ± 0.027℄

π± γ
ηρ
π+ π+ π− π0

4π

ηππ

Mass m = 1229.5 ± 3.2 MeV (S = 1.6)
Full width = 142 ± 9 MeV (S = 1.2)

b1 (1235) DECAY MODES

Fra tion ( i / )

η π+ π−

p (MeV/ )

( 1.6 ± 0.4) × 10−3
seen
< 50
%
seen
< 8
%
< 6
%
< 2
%
< 1.5
%

90%
90%
90%
84%

248
235
235
147

†

I G (J PC ) = 1− (1 + +)

η (1295) DECAY MODES

η π+ π−

a0 (980) π

η π0 π0
η (ππ )S -wave

π (1300)

Mass m = 1230 ± 40 MeV [l ℄
Full width = 250 to 600 MeV

a1 (1260) DECAY MODES
(ρπ )S −wave
(ρπ )D −wave
( ρ(1450) π )S −wave
( ρ(1450) π )D −wave

σπ

f0 (980) π
f0 (1370) π
f2 (1270) π
K K ∗ (892)+ . .

πγ

353
353
†
†

{

Mass m = 1275.1 ± 1.2 MeV (S = 1.1)
2. 9
Full width = 185.1 +
− 2.4 MeV (S = 1.5)

f2 (1270) DECAY MODES
ππ
π + π − 2π 0

KK

2π+ 2π−

K 0 K − π+ + . .
e+ e−

Fra tion ( i / )

seen
seen

a2 (1320)

a2 (1320) DECAY MODES

S=1.2

623

S=1.3

562

S=2.8
S=1.2
S=2.1

403
559
326
564
638
477
293
638

S=1.9
CL=95%
CL=95%
CL=90%

CL=90%

568
479

†

S=1.2

482
238

S=1.1

482
308
†

CL=95%
S=2.8

603
390
407
236

p (MeV/ )
487
248
490

{

p (MeV/ )
404

{

Fra tion ( i / )

S ale fa tor/
p
Con den e level (MeV/ )

(70.1 ± 2.7 ) %
(14.5 ± 1.2 ) %
(10.6 ± 3.2 ) %
( 4.9 ± 0.8 ) %
( 5.3 ± 0.9 ) × 10−3
( 2.68 ± 0.31) × 10−3
( 9.4 ± 0.7 ) × 10−6
< 5
× 10−9

ηπ
ωππ

KK

.4
(84.8 +2
− 1.2 ) %
.4
( 7.1 +1
− 2.7 ) %
( 4.6 ± 0.4 ) %
( 2.8 ± 0.4 ) %
( 4.0 ± 0.8 ) × 10−3
( 3.0 ± 1.0 ) × 10−3
( 1.64 ± 0.19) × 10−5
< 8
× 10−3
< 3.4
× 10−3
× 10−10
< 6

336

I G (J PC ) = 1− (2 + +)

0. 5
Mass m = 1318.3 +
− 0.6 MeV (S = 1.2)
Full width = 107 ± 5 MeV [l ℄

3π

S ale fa tor/
p
Con den e level (MeV/ )

S=1.3

= 200 to 600 MeV

Fra tion ( i / )

†
†

563

seen
seen
seen
seen

ρπ
π (ππ )S -wave

†

608

S=1.3

Fra tion ( i / )

π (1300) DECAY MODES

179

I G (J PC ) = 0+(2 + +)

f2 (1270)

ηη
4π0
γγ
ηππ

p (MeV/ )

Fra tion ( i / )

566

I G (J PC ) = 1− (0 − + )
Mass m = 1300 ± 100 MeV [l ℄

Full width

seen
seen
seen
seen
seen
not seen
seen
seen
seen
seen

568

S=1.3

Mass m = 1294 ± 4 MeV (S = 1.6)
Full width = 55 ± 5 MeV

†

535

(16 ± 7 ) %
( 9.0 ± 0.4) %
not seen
( 3.0 ± 0.9) × 10−3
< 3. 1
× 10−3
( 5.5 ± 1.3) %
( 7.4 ± 2.6) × 10−4

S=1.3

I G (J PC ) = 0+(0 − + )

η (1295)

607
84%

S ale fa tor/
p
Con den e level (MeV/ )

f1 (1285) DECAY MODES

4π0

Mass m = 1170 ± 20 MeV
Full width = 360 ± 40 MeV
Fra tion ( i / )

Mass m = 1281.9 ± 0.5 MeV (S = 1.8)
Full width = 24.2 ± 1.1 MeV (S = 1.3)

ρ0 π + π −

I G (J PC ) = 0− (1 + − )

h1 (1170) DECAY MODES

I G (J PC ) = 0+(1 + +)

f1 (1285)

η ′ (958) π
π± γ
γγ

e+ e−

f0 (1370) [j ℄

S=1.2
S=1.3

CL=90%

I G (J PC ) = 0+(0 + +)

Mass m = 1200 to 1500 MeV
Full width = 200 to 500 MeV

624
535
366
437
288
652
659
659

MesonSummaryTable
37

f0 (1370) DECAY MODES

Fra tion ( i / )

ππ

seen
seen
seen
seen
seen
dominant
seen
seen
seen
seen
seen
not seen
not seen
not seen
seen
not seen

4π
4π 0
2π+ 2π−
π + π − 2π 0
ρρ
2(ππ )S -wave
π (1300) π
a1 (1260) π
ηη

KK
K K nπ
6π

ωω
γγ

e+ e−
π1 (1400) [n℄

p (MeV/ )
672
617
617
612
615
†

{
†

35
411
475

η π0
η π−

508
†

I G (J PC ) = 1− (1 − + )

p (MeV/ )

Fra tion ( i / )

557
556

KKπ
ηππ

a0 (980) π

η (ππ )S -wave

f0 (980) η
4π

ρρ

ρ0 γ

K ∗ (892) K
f1 (1420) [p ℄

seen
seen
seen
seen
seen
seen
<58 %
seen
seen

Fra tion ( i / )

πη
π η′ (958)

seen
seen
seen
seen
seen
seen

KK

ωππ

a0 (980) π π
γγ

ρ(1450) [r ℄

p
Con den e level (MeV/ )

Fra tion ( i / )

ππ
4π

seen
seen
seen
possibly seen
not seen
not seen
possibly seen
possibly seen
not seen
not seen
not seen
not seen

ηρ

a2 (1320) π
KK
K K ∗ (892)+ . .
ηγ

η (1475) [o ℄

{
†

639
99.85%

†

491
123

ηππ
φγ

dominant
dominant
possibly seen
seen

KKπ
K K ∗ (892)+ . .

ω (1420) [q ℄

η (1475) DECAY MODES

KKπ
K K ∗ (892)+ . .
a0 (980) π
γγ

f0 (1500) [n℄

p (MeV/ )
438
163
573
349

Mass m (1400{1450) MeV
Full width (180{250) MeV
Fra tion ( i / )

ρπ
ωππ

dominant
seen
seen
seen

b1 (1235) π
e+ e−

720
669
732
311
54
541
229
630

{

398
92
178

I G (J PC ) = 0+(0 − + )

p (MeV/ )

Fra tion ( i / )
dominant
seen
seen
seen

477
245
396
738

I G (J PC ) = 0+(0 + +)

Mass m = 1505 ± 6 MeV (S = 1.3)
Full width = 109 ± 7 MeV

I G (J PC ) = 0− (1 − − )

ω (1420) DECAY MODES

p (MeV/ )

Mass m = 1476 ± 4 MeV (S = 1.3)
Full width = 85 ± 9 MeV (S = 1.5)

Mass m = 1426.4 ± 0.9 MeV (S = 1.1)
Full width = 54.9 ± 2.6 MeV
Fra tion ( i / )

627
410
547
484
342
737

I G (J PC ) = 1+(1 − − )

ρ(1450) DECAY MODES

424
562
345

I G (J PC ) = 0+(1 + +)

f1 (1420) DECAY MODES

p (MeV/ )

Mass m = 1465 ± 25 MeV [l ℄
Full width = 400 ± 60 MeV [l ℄

f0 (500) γ
f0 (980) γ
f0 (1370) γ
f2 (1270) γ

I G (J PC ) = 0+(0 − + )

Fra tion ( i / )

a0 (1450) DECAY MODES

e+ e−

Mass m = 1408.8 ± 1.8 MeV [l ℄ (S = 2.1)
Full width = 51.0 ± 2.9 MeV [l ℄ (S = 1.8)
η (1405) DECAY MODES

Mass m = 1474 ± 19 MeV
Full width = 265 ± 13 MeV

685
685

seen
seen

η (1405) [o ℄

I G (J PC ) = 1− (0 + +)

†

Mass m = 1354 ± 25 MeV (S = 1.8)
Full width = 330 ± 35 MeV
π1 (1400) DECAY MODES

a0 (1450) [j ℄

p (MeV/ )
486
444
125
710

f0 (1500) DECAY MODES

Fra tion ( i / )

ππ
π+ π−
2π 0
4π
4π 0
2 π + 2π −
2(ππ )S -wave
ρρ
π (1300) π
a1 (1260) π
ηη
η η′ (958)

(34.9 ± 2.3) %
seen
seen
(49.5 ± 3.3) %
seen
seen
seen
seen
seen
seen
( 5.1 ± 0.9) %
( 1.9 ± 0.8) %
( 8.6 ± 1.0) %
not seen

KK
γγ

p
S ale fa tor (MeV/ )
1.2

1.2

741
740
741
691
691
687

{
†

1.4
1.7
1.1

144
218
516
†

568
753

MesonSummaryTable
38

′
2

f (1525)
2

I G (J PC ) = 0+(2 + +)

Mass m = 1525 ± 5 MeV [l ℄
+ 6 MeV [l ℄
Full width = 73 −
5
Fra tion ( i / )

ηη
ππ
γγ

(88.7 ± 2.2 ) %
(10.4 ± 2.2 ) %
( 8.2 ± 1.5 ) × 10−3
( 1.10 ± 0.14) × 10−6

KK

π1 (1600) [n℄

Fra tion ( i / )

πππ
ρ0 π −

not seen
not seen
not seen
seen
seen
seen

f2

b1 (1235) π

η ′ (958) π −
f1 (1285) π

η2 (1645)

581
530
750
763

Fra tion ( i / )

η π+ π−

seen
seen
seen
seen
seen
not seen

ω (1650) [s ℄

803
641
318
357
543
314

ρπ
ωππ
ωη

seen
seen
seen
seen

e+ e−
ω3 (1670)

†

K K ∗ (892)+ . .
K 0S K π
KK
e+ e−

Fra tion ( i / )

ρπ
ωππ

seen
seen
possibly seen

I G (J PC ) = 1− (2 − + )

Mass m = 1672.2 ± 3.0 MeV [l ℄ (S = 1.4)
Full width = 260 ± 9 MeV [l ℄ (S = 1.2)

455
304
836
147
365
323
292

dominant
seen
seen
seen
not seen
seen

462
621
680
840
623
544

I G (J PC ) = 1+(3 − − )
(S = 1.5)

Fra tion ( i / )

4π

(71.1 ± 1.9 ) %
(67 ± 22 ) %
(16 ± 6 ) %
(23.6 ± 1.3 ) %
( 3.8 ± 1.2 ) %
( 1.58 ± 0.26) %
seen
seen
seen

π± π+ π− π0
ωπ
ππ
KKπ

Ex luding 2ρ and a2 (1320) π .

a2 (1320) π
ρρ

ρ(1700) [r ℄

p (MeV/ )

Fra tion ( i / )

ρ3 (1690) DECAY MODES

KK

647
617
500
835

90%
97.7%
97.7%

possibly seen
not seen

Mass m = 1688.8 ± 2.1 MeV [l ℄
Full width = 161 ± 10 MeV [l ℄

p
S ale fa tor (MeV/ )

1.2

seen
seen

790
787
655
834
629
685
727
520
633
307
335

I G (J PC ) = 1+(1 − − )

Mass m = 1720 ± 20 MeV [l ℄ (η ρ0 and π+ π− modes)
Full width = 250 ± 100 MeV [l ℄ (η ρ0 and π+ π− modes)

I G (J PC ) = 0− (3 − − )

ω3 (1670) DECAY MODES

π2 (1670)

φ(1680) DECAY MODES

η π+ π−
ρ(770) η
ππρ
p (MeV/ )

{
{

Mass m = 1680 ± 20 MeV [l ℄
Full width = 150 ± 50 MeV [l ℄

p (MeV/ )
242
580
404
685
499

809
329
648

I G (J PC ) = 0− (1 − − )

ρ3 (1690)

Mass m = 1667 ± 4 MeV
Full width = 168 ± 10 MeV [l ℄

b1 (1235) π

ωρ
γγ
ρ(1450) π
b1 (1235) π

K + K − π+ π−

Mass m = 1670 ± 30 MeV
Full width = 315 ± 35 MeV
Fra tion ( i / )

K K ∗ (892)+ . .

ωππ

I G (J PC ) = 0− (1 − − )

ω (1650) DECAY MODES

ρπ
σπ
(ππ )S -wave

p (MeV/ )

I G (J PC ) = 0+(2 − + )

η2 (1645) DECAY MODES

a0 (980) π
f2 (1270) η

(95.8 ± 1.4) %
(56.3 ± 3.2) %
(31 ± 4 ) %
(10.9 ± 3.4) %
( 8.7 ± 3.4) %
( 4.2 ± 1.4) %
( 2.7 ± 1.1) %
< 2.8
× 10−7
< 3.6
× 10−3
< 1.9
× 10−3

φ(1680)

Mass m = 1617 ± 5 MeV
Full width = 181 ± 11 MeV

a2 (1320) π
KKπ
K∗K

3π

f1 (1285) π
a2 (1320) π

(S = 1.4)

π1 (1600) DECAY MODES

(1270) π−

p (MeV/ )

I G (J PC ) = 1− (1 − + )

+ 8 MeV
Mass m = 1662 −
9
Full width = 241 ± 40 MeV

Fra tion ( i / )

f2 (1270) π

f ′2 (1525) DECAY MODES

p
Con den e level (MeV/ )

π2 (1670) DECAY MODES

ρ(1700) DECAY MODES

2(π+ π− )
p (MeV/ )
645
615
361

ρπ π
ρ0 π + π −
ρ± π ∓ π 0

a1 (1260) π
h1 (1170) π

π (1300) π
ρρ
π+ π−
ππ

K K ∗ (892)+ . .
ηρ

a2 (1320) π
KK
e+ e−
π0 ω

Fra tion ( i / )
large
dominant
large
large
seen
seen
seen
seen
seen
seen
seen
seen
not seen
seen
seen
seen

p (MeV/ )
803
653
651
652
404
447
349
372
849
849
496
545
334
704
860
674

MesonSummaryTable
39

I G (J PC ) = 0+(0 + +)

f0 (1710) [t ℄
6
= 1722 +
− 5 MeV

Mass m
Full width

(S = 1.6)
= 135 ± 7 MeV (S = 1.1)

f0 (1710) DECAY MODES

Fra tion ( i / )

ηη
ππ
ωω

seen
seen
seen
seen

KK

p (MeV/ )

705
664
850
358

π+ π− π−

Fra tion ( i / )
seen
seen
seen
seen
not seen
not seen
seen
seen
not seen
not seen
not seen
seen
seen
seen
not seen

f0 (500) π−
f0 (980) π−
f0 (1370) π−
f0 (1500) π−

ρπ −
η η π−

a0 (980) η
a2 (1320) η
f2 (1270) π
f0 (1370) π−
f0 (1500) π−

η η′ (958) π −

K ∗0 (1430) K −
K ∗ (892) K −

{

625
368
250
732
661
473

†

442
368
250
375
†

570

Mass m = 1854 ± 7 MeV
+ 28 MeV
Full width = 87 −
23
φ3 (1850) DECAY MODES

KK
K K ∗ (892)+ . .

seen
seen

p (MeV/ )

785
602

I G (J PC ) = 0+(2 + +)

f2 (1950)

f4 (2050) DECAY MODES

f2 (1950) DECAY MODES

Fra tion ( i / )
seen
seen
seen
seen
seen
seen
seen
seen

π+ π−
π0 π0
4π
ηη

KK
γγ

pp

I G (J PC ) = 0+(2 + +)

f2 (2010)
60
= 2011 +
− 80 MeV

Mass m
Full width

= 202 ± 60 MeV

Fra tion ( i / )
seen
(17.0 ± 1.5) %
+3.4 ) × 10−3
( 6.8 −
1.8
( 2.1 ± 0.8) × 10−3

ωω
ππ

KK
ηη
4π0

< 1. 2

a2 (1320) π

%

seen

p (MeV/ )

637
1000
880
848
964
567

I G (J PC ) = 0− (1 − − )
Mass m = 2175 ± 15 MeV (S = 1.6)
Full width = 61 ± 18 MeV

φ(2170) DECAY MODES

Fra tion ( i / )

e+ e−

seen
seen
seen

φ f0 (980)

K + K − π0 π0 seen
not seen
not seen

p (MeV/ )

1087
416

{
{

770
622

I G (J PC ) = 0+(2 + +)

f2 (2300)

Mass m = 1944 ± 12 MeV (S = 1.5)
Full width = 472 ± 18 MeV

K ∗ (892) K ∗ (892)

868
974
841
580
819
624
918
761

Mass m = 2018 ± 11 MeV (S = 2.1)
Full width = 237 ± 18 MeV (S = 1.9)

K + K − f0 (980) →
K + K − π+ π−
K + K − f0 (980) →
K ∗0 K ± π ∓
K ∗ (892)0 K ∗ (892)0

Mass m = 1895 ± 16 MeV
Full width = 235 ± 34 MeV

p (MeV/ )

I G (J PC ) = 0+(4 + +)

f4 (2050)

φ(2170)

I G (J PC ) = 1− (2 − + )

π2 (1880)

ω π− π0
ωρ
η π0
′
η (958) π

(S = 1.2)

Fra tion ( i / )

Fra tion ( i / )
seen
seen
seen
seen
seen
seen
seen
seen

f2 (1270) π

879

†

876

+ 10 MeV (S = 1.1)
Mass m = 1996 −
9
+ 28 MeV (S = 1.3)
Full width = 255 −
24

π+ π− π0
ρπ

p (MeV/ )

p (MeV/ )

I G (J PC ) = 1− (4 + +)

a4 (2040)

KK

I G (J PC ) = 0− (3 − − )

φ3 (1850)

seen
seen

a4 (2040) DECAY MODES

Mass m = 1812 ± 12 MeV (S = 2.3)
Full width = 208 ± 12 MeV
π (1800) DECAY MODES

Fra tion ( i / )

KK

I G (J PC ) = 1− (0 − + )

π (1800)

f2 (2010) DECAY MODES

φφ

Mass m = 2297 ± 28 MeV
Full width = 149 ± 40 MeV
p (MeV/ )

387
962
963
925
803
837
972
254

f2 (2300) DECAY MODES

Fra tion ( i / )

φφ

seen
seen
seen

KK

γγ

p (MeV/ )

529
1037
1149

I G (J PC ) = 0+(2 + +)

f2 (2340)

Mass m = 2339 ± 60 MeV
80
Full width = 319 +
− 70 MeV
f2 (2340) DECAY MODES

Fra tion ( i / )

φφ
ηη

seen
seen

p (MeV/ )

573
1033

40

MesonSummaryTable
π + π − µ+ νµ
π 0 π 0 π 0 e + νe

STRANGE MESONS
( = ± 1, = = 0)
K+

= us,

K0

S

= ds,

K0

C B

=

d s, K −

K±

= u s,

I (J P )

similarly for

= 21 (0− )

Slope parameter g [v ℄
(See Parti le Listings for quadrati oeÆ ients and alternative
parametrization related to ππ s attering)
K ± → π ± π + π − g = − 0.21134 ± 0.00017
(g+ − g− ) / (g+ + g− ) = (− 1.5 ± 2.2) × 10−4
K ± → π ± π 0 π 0 g = 0.626 ± 0.007
(g+ − g− ) / (g+ + g− ) = (1.8 ± 1.8) × 10−4
de ay form fa tors [a,x ℄
Assuming µ-e universality
+ ) = λ (K + ) = (2.97 ± 0.05) × 10−2
λ+ (K µ
+ e3
3
+ ) = (1.95 ± 0.12) × 10−2
λ0 (K µ
3

Not assuming µ-e universality
) = (2.98 ± 0.05) × 10−2
λ+ (K +
e3

form fa tor quadrati t
) linear oe . = (2.49 ± 0.17) × 10−2
λ'+ (K ±
e3
±
′′
λ + (K e 3 ) quadrati oe . = (0.19 ± 0.09) × 10−2
¯
¯
¯fS /f+ ¯ = (− 0.3 + 0.8 ) × 10−2
− 0.7

)>0)− (cos(θ

)<0)

Kµ
Kµ
−2
AF B (K ±
π µ µ ) = (cos(θ K µ )>0)+ (cos(θ K µ )<0) < 2.3 × 10 , CL
= 90%
T

violation parameters
K + → π 0 µ+ νµ
K + → µ+ νµ γ
K + → π 0 µ+ ν

µ

K

K

2.5) × 10−3

PT

= (− 1.7 ±

PT

= (− 0.6 ± 1.9) × 10−2

e + νe
µ+ νµ
π 0 e + νe

Called

π 0 µ+ ν

µ

Called

π 0 π 0 e + νe
π + π − e + νe

Fra tion ( i / )

S ale fa tor/
p
Con den e level (MeV/ )

Leptoni and semileptoni modes

+

K e3.

+

K µ3 .

S=1.2
S=1.1
S=1.3

205
133
125

[y,z ℄ (
[a,aa℄ (
[a,aa℄ <
[a,aa℄ <
(
[y,z ℄ (
[a,aa℄ <
[y,z ℄ (

6.2
1.33
2.7
2.6
9.4
2.56
5.3
1.25
5

<

± 0.8

) × 10−3

± 0.22 ) × 10−5
× 10−5

× 10−4
± 0.4 ) × 10−6
± 0.16 ) × 10−4
× 10−5
± 0.25 ) × 10−5
× 10−6

236
CL=90%
CL=90%

CL=90%
CL=90%

) × 10−6
) × 10−6
.
0
+6
7.6 − 3.0 ) × 10−6
1.04 ± 0.31 ) × 10−4
9.2 ± 0.7 ) × 10−7
1.0
× 10−4
1.19 ± 0.13 ) × 10−8

(− 4.2
( 6.0

[y,bb℄

π+ π0 π0 γ

[y,z ℄

π+ π+ π− γ
π+ γ γ
π + 3γ
π+ e + e − γ

[y,z ℄ (
[y ℄ (
[y ℄ <
(

(

{
{
{

247
228
228
215
206

{

± 0. 9

205

± 0.4

133

CL=90%

125
227
227
227

Leptoni modes with ℓ ℓ pairs

6
× 10−5
6.0
× 10−6
2.48 ± 0.20 ) × 10−8
7.06 ± 0.31 ) × 10−8
1.7 ± 0.5 ) × 10−8
4.1
× 10−7

<
<

(
(
(
<

CL=90%
CL=90%

CL=90%

K0

SQ

<

SQ

<

(
(
(

S1
S1
S1
S1

<

LF
LF

<
[d ℄ <

LF

<

LF

<
<

L
L
L
L
L

1.3
× 10−8
3.0
× 10−6
3.00 ± 0.09 ) × 10−7
9.4 ± 0.6 ) × 10−8
1.7 ± 1.1 ) × 10−10
4.3
× 10−5
2.1
× 10−8
4
× 10−3
1.3
× 10−11
5.2
× 10−10
5.0
× 10−10
6.4
× 10−10
1.1
× 10−9
3.3
× 10−3
3
× 10−3
2. 3
× 10−9

<

[d ℄ <
[d ℄ <
<

[ ℄<

I (J P )

50%

CL=90%
CL=95%
S=2.6
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

= 21 (0− )

KS ,

50% KL
Mass m = 497.614 ± 0.024 MeV (S = 1.6)
m K 0 − m K ± = 3.937 ± 0.028 MeV (S = 1.8)

Mean Square Charge Radius
­ 2®
r
= − 0.077 ± 0.010 fm2

Im(ξ ) = − 0.006 ± 0.008

− modes are harge onjugates of the modes below.

+ DECAY MODES

π + π 0 γ (INT)
π + π 0 γ (DE)

π+ π+ e − ν e
π + π + µ− ν µ
π+ e + e −
π + µ+ µ−
π+ ν ν
π+ π0 ν ν
µ− ν e + e +
µ+ νe
π + µ+ e −
π + µ− e +
π − µ+ e +
π− e + e +
π − µ+ µ+
µ+ ν e
π0 e + ν e
π+ γ

Charge Radius
­®
r = 0.560 ± 0.031 fm

(cos(θ

151
135

247
236
247
236
223
185

Lepton Family number (LF ), Lepton number (L), S = Q (SQ )
violating modes, or S = 1 weak neutral urrent (S1 ) modes

¯
¯
¯fT /f+ ¯ = (− 1.2 ± 2.3) × 10−2
¯
¯
+
K µ3 ¯fS /f+ ¯ = (0.2 ± 0.6) × 10−2
¯
¯
+
K µ3 ¯fT /f+ ¯ = (− 0.1 ± 0.7) × 10−2
¯
¯
K + → e + νe γ ¯FA + FV ¯ = 0.133 ± 0.008 (S = 1.3)
¯
¯
+
+
K → µ νµ γ ¯FA + FV ¯ = 0.165 ± 0.013
¯
¯
K + → e + νe γ ¯FA − FV ¯ < 0.49
¯
¯
K + → µ+ νµ γ ¯FA − FV ¯ = − 0.24 to 0.04, CL = 90%

violation parameters
−2
(K ±
π e e ) = (− 2.2 ± 1.6) × 10
±
(K π µ µ ) = 0.010 ± 0.023
−3
(K ±
π π γ ) = (0.0 ± 1.2) × 10

CL=90%

Hadroni modes with photons or ℓ ℓ pairs

µ

K e3

CP

µ+ νµ γ
µ+ νµ γ (SD+ )
µ+ νµ γ (SD+ INT)
µ+ νµ γ (SD− + SD− INT)
e + νe γ
π 0 e + νe γ
π 0 e + νe γ (SD)
π 0 µ+ νµ γ
π 0 π 0 e + νe γ

µ+ νµ ν ν
e + νe e + e −
µ+ νµ e + e −
e + νe µ+ µ−
µ+ ν µ+ µ−

Ke 3

+

) × 10−5
× 10−6

( 20.66 ± 0.08 ) %
( 1.761 ± 0.022) %
( 5.59 ± 0.04 ) %

e + νe ν ν

+ ) = (2.96 ± 0.17) × 10−2
λ+ (K µ
3
+
λ0 (K µ3 ) = (1.96 ± 0.13) × 10−2

+

± 0. 9

Leptoni and semileptoni modes with photons

(S = 2.8)
Mean life τ = (1.2380 ± 0.0021) × 10−8 s (S = 1.9)
τ = 3.712 m

K e3

1. 4
3.5

Hadroni modes

π+ π0
π+ π0 π0
π+ π+ π−

K ∗ 's

Mass m = 493.677 ± 0.016 MeV [u ℄

±
K

(
<

( 1.581 ± 0.007) × 10−5
( 63.55 ± 0.11 ) %
( 5.07 ± 0.04 ) %

S=1.2
S=2.1

247
236
228

(

3.353 ± 0.034) %

S=1.8

215

(
(

2.2 ± 0.4 ) × 10−5
4.254 ± 0.032) × 10−5

206
203

parameters in K 0 -K 0 mixing [x ℄
Asymmetry AT in K 0 -K 0 mixing = (6.6 ± 1.6) × 10−3

T-violation

parameters [x ℄
Re δ = (2.5 ± 2.3) × 10−4
Im δ = (− 1.5 ± 1.6) × 10−5
Re(y), Ke3 parameter = (0.4 ± 2.5) × 10−3
Re(x
= (− 2.9 ± 2.0) × 10−3
− ), Ke 3 parameter
¯
¯
¯m 0 − m 0 ¯ / m average < 6 × 10−19 , CL = 90% [dd ℄
K
K
( K 0 − K 0 )/m average = (8 ± 8) × 10−18

CPT-violation

Tests of S = Q
Re(x+ ), Ke 3 parameter = (− 0.9 ± 3.0) × 10−3

203
151
227
172
227
205
236
236
214
214
214
227
172
236
228
227

41

I (J P ) =

(0−)
Mean life τ = (0.8954 ± 0.0004) × 10−10 s (S = 1.1) Assuming CPT
Mean life τ = (0.89564 ± 0.00033) × 10−10 s Not assuming

K 0S

1
2

CPT
τ

= 2.6844 m Assuming CPT

CP-violation parameters [ee ℄

Im(η+−0 ) = − 0.002 ± 0.009
η 000 ) = (− 0.1 ± 1.6) × 10−2
Im(
¯
¯ ¯
¯
¯η 000 ¯ = ¯A(K 0 → 3π 0 )/A(K 0 → 3π 0 )¯ < 0.0088, CL =
L
S
90%
CP asymmetry A in π+ π− e + e − = (− 0.4 ± 0.8)%

K 0S DECAY MODES

Hadroni modes

π0 π0
π+ π−

(30.69 ± 0.05) %
(69.20 ± 0.05) %
.1
−7
( 3.5 +1
− 0.9 ) × 10

π+ π− π0
π+ π− γ
π+ π− e + e −
π0 γ γ
γγ
π ± e ∓ νe

S ale fa tor/
p
Con den e level (MeV/ )

Fra tion ( i / )

3

e+ e−

π0 e + e −
π 0 µ+ µ−

[z, ℄
[ ℄

(
(
(
(

1.79 ± 0.05) × 10−3
4.79 ± 0.15) × 10−5
4.9 ± 1.8 ) × 10−8
2.63 ± 0.17) × 10−6

Semileptoni modes
[gg ℄

CP
S1
S1
S1
S1

< 2.6
< 9
< 9

[ ℄

m KL − m KS

S=3.0

( 7.04 ± 0.08) × 10−4

urrent (S1 ) modes

× 10−8
× 10−9

× 10−9
.5 ) × 10−9
( 3.0 +1
− 1.2
.5
−9
( 2.9 +1
− 1.2 ) × 10

I (J P ) =

K 0L

133

Modes with photons or ℓ ℓ pairs

CP violating (CP) and S = 1 weak neutral

π0
µ+ µ−

209
206

1
2

CL=90%
CL=90%
CL=90%

206
206
231
249
229
139
225
249
230
177

(0−)

= (0.5293 ± 0.0009) × 1010 h s− 1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010) × 1010 h s− 1 Not assuming CPT
Mean life τ = (5.116 ± 0.021) × 10−8 s (S = 1.1)
τ = 15.34 m
Slope parameter g [v ℄
(See Parti le Listings for other linear and quadrati oeÆ ients)
K 0L → π+ π− π0 : g = 0.678 ± 0.008 (S = 1.5)
K 0L → π0 π0 π0 : h = (+0.59 ± 0.20 ± 1.16) × 10−3
KL de ay form fa tors [x ℄
Linear parametrization assuming µ-e universality
0 ) = λ (K 0 ) = (2.82 ± 0.04) × 10−2 (S = 1.1)
λ+ (K µ
+ e3
3
0
λ0 (K µ3 ) = (1.38 ± 0.18) × 10−2 (S = 2.2)
Quadrati parametrization assuming µ-e universality
0 ) = λ′ (K 0 ) = (2.40 ± 0.12) × 10−2 (S = 1.2)
λ′ + (K µ
+ e3
3
λ′′ + (K 0µ3 ) = λ′′ + (K 0e 3 ) = (0.20 ± 0.05) × 10−2 (S = 1.2)
0 ) = (1.16 ± 0.09) × 10−2 (S = 1.2)
λ0 (K µ
3
Pole parametrization assuming µ-e universality
0
0
e
Mµ
V (K µ3 ) = M V (K e 3 ) = 878 ± 6 MeV (S = 1.1)
µ
0
M S (K µ3 ) = 1252 ± 90 MeV (S = 2.6)
Dispersive parametrization assuming µ-e universality
+ = (0.251 ± 0.006) × 10−1 (S = 1.5)
ln¯(C) = ¯(1.75 ± 0.18) × 10−1 (S = 2.0)
1. 4
−2
K 0e 3 ¯fS /f+ ¯ = (1.5 +
− 1.6 ) × 10

MesonSummaryTable

= (5 ) 10
= (12 12) 10
,
:
= 0 205
0 022 (S = 1.8)
,
:
= 1 69
0 08 (S = 1.7)
: / = 0 737 0 014 GeV
K L → π 0 2γ :
aV = − 0.43 ± 0.06 (S = 1.5)
CP-violation parameters [ee ℄
A
¯L=
¯ (0.332 ± 0.006)%
¯η 00 ¯ = (2.220 ± 0.011) × 10−3 (S = 1.8)
¯
¯
¯η +− ¯ = (2.232 ± 0.011) × 10−3 (S = 1.8)
¯ ¯
¯ǫ¯ = (2.228 ± 0.011) × 10−3 (S = 1.8)
¯
¯
¯η 00 /η +− ¯ = 0.9950 ± 0.0007 [hh℄ (S = 1.6)
Re(ǫ′/ǫ) = (1.66 ± 0.23) × 10−3 [hh℄ (S = 1.6)
Assuming CPT
φ+− = (43.51 ± 0.05)◦ (S = 1.2)
φ00 = (43.52 ± 0.05)◦ (S = 1.3)
φǫ =φSW = (43.52 ± 0.05)◦ (S = 1.2)
′
Im(ǫ /ǫ) = −(φ00 − φ+−)/3 = (− 0.002 ± 0.005)◦ (S = 1.7)
Not assuming CPT
φ+− = (43.4 ± 0.5)◦ (S = 1.2)
φ00 = (43.7 ± 0.6)◦ (S = 1.2)
φǫ = (43.5 ± 0.5)◦ (S = 1.3)
CP asymmetry A in K 0L → π+ π− e + e − = (13.7 ± 1.5)%
βCP from K 0L → e + e − e + e − = − 0.19 ± 0.07
γCP from K 0L → e + e − e + e − = 0.01 ± 0.11 (S = 1.6)
j for K 0L → π+ π− π0 = 0.0012 ± 0.0008
f for K 0L → π+ π− π0 = 0.004 ± 0.006
¯
¯
¯η +−γ ¯ = (2.35 ± 0.07) × 10−3
φ+−γ = (44 ± 4)◦
¯
¯ ′
¯/ǫ < 0.3, CL = 90%
¯ǫ
¯ +−γ
¯
¯gE 1 ¯ for K 0 → π + π − γ < 0.21, CL = 90%
L
T-violation parameters
Im(ξ) in K 0µ3 = − 0.007 ± 0.026
CPT invarian e tests
φ00 − φ+− = (0.34 ± 0.32)◦
Re( 32 η+− + 13 η00 )− A2L = (− 3 ± 35) × 10−6
S = −Q in K 0ℓ3 de ay
Re x = − 0.002 ± 0.006
Im x = 0.0012 ± 0.0021
/
/

¯
¯
+ 4 × −2
K 0e 3 ¯fT f+ ¯
−5
¯
¯
0
±
× −2
K µ3 ¯fT f+ ¯
+
+
−
−
±
KL → ℓ ℓ γ KL → ℓ ℓ ℓ′+ ℓ′− αK ∗ − .
.
K 0L → ℓ+ ℓ− γ K 0L → ℓ+ ℓ− ℓ′+ ℓ′− αDIP − . ±
.
2
KL → π+ π− e + e − a1 a2 − . ± .

K 0L DECAY MODES

π ± e ∓ νe

Fra tion ( i / )

S ale fa tor/
p
Con den e level (MeV/ )

Semileptoni modes
[gg ℄

(40.55 ± 0.11 ) %

S=1.7

229

π ± µ∓ νµ

[gg ℄

(27.04 ± 0.07 ) %

S=1.1

216

π0 π± e ∓ ν
π± e ∓ ν e + e −

[gg ℄
[gg ℄

( 1.05 ± 0.11 ) × 10−7
( 5.20 ± 0.11 ) × 10−5
( 1.26 ± 0.04 ) × 10−5

Called K 0e 3 .

Called K µ0 3 .
( π µ atom) ν

188
207
229

Hadroni modes, in luding Charge onjugation×Parity Violating (CPV) modes
(19.52 ± 0.12 ) %
S=1.6
139
3π0
π+ π− π0
π+ π−
π0 π0

π ± e ∓ νe γ
π ± µ∓ νµ γ

CPV
CPV

[ii ℄

(12.54 ± 0.05 ) %
( 1.967 ± 0.010) × 10−3
( 8.64 ± 0.06 ) × 10−4

Semileptoni modes with photons
[z,gg,jj ℄

( 3.79 ± 0.06 ) × 10−3
( 5.65 ± 0.23 ) × 10−4

S=1.5
S=1.8

133
206
209
229
216

MesonSummaryTable
42

π0 π0 γ
π+ π− γ
π + π − γ (DE)
π 0 2γ
π0 γ e + e −

Hadroni modes with photons or ℓ ℓ pairs
< 2.43
× 10−7
[z,jj ℄ ( 4.15 ± 0.15 ) × 10−5
( 2.84 ± 0.11 ) × 10−5

[jj ℄

( 1.273 ± 0.033) × 10−6
( 1.62 ± 0.17 ) × 10−8

CL=90%
S=2.8
S=2.0

209
206
206
231
230

Other modes with photons or ℓ ℓ pairs

2γ
3γ

e+ e− γ
µ+ µ− γ
e+ e− γ γ

µ+ µ− γ γ

± 0.04 ) × 10−4
× 10−8
± 0.4 ) × 10−6

( 5.47
< 7.4
( 9.4
( 3.59
[jj ℄ ( 5.95

± 0.11 ) × 10−7
± 0.33 ) × 10−7

[jj ℄

+0.8
− 0. 6

( 1.0

S=1.1
CL=90%
S=2.0
S=1.3

249
249
249
225
249

) × 10−8

K ∗ (1410)

Mass m = 1414 ± 15 MeV (S = 1.3)
Full width = 232 ± 21 MeV (S = 1.1)
K
K

∗ (1410) DECAY MODES

K ∗ (892) π
Kπ
Kρ
γK0

S1

e+ e−

S1

π+ π− e + e −
π0 π0 e + e −
π 0 π 0 µ+ µ−
µ+ µ− e + e −
e+ e− e+ e−
π 0 µ+ µ−
π0 e + e −
π0 ν ν
π0 π0 ν ν
e ± µ∓
e ± e ± µ∓ µ∓
π 0 µ± e ∓
π 0 π 0 µ± e ∓

S1
S1
S1
S1
S1

, [ ℄
, [ ℄
CP,S1 [ll ℄

CP S1 kk
CP S1 kk

S1
LF
LF
LF
LF

K ∗ (892)

[gg ℄
[gg ℄
[gg ℄

) × 10−9
) × 10−12

225

) × 10−7
× 10−9
× 10−11
) × 10−9
) × 10−8
× 10−10
× 10−10
× 10−8
× 10−7
× 10−12
× 10−11
× 10−11
× 10−10

206
209
57
225
249
177
230
231
209
238
225
217
159

249
CL=90%
CL=90%

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

I (J P ) = 21 (1− )
K ∗ (892)±
K ∗ (892)±
K ∗ (892)0
K ∗ (892)±
K ∗ (892)±
K ∗ (892)0

K

[jj ℄

( 6.84 ± 0.11
+6
( 9
−4
( 3.11 ± 0.19
< 6. 6
< 9. 2
( 2.69 ± 0.27
( 3.56 ± 0.21
< 3. 8
< 2. 8
< 2.6
< 8.1
< 4.7
< 4.12
< 7.6
< 1. 7

hadroprodu ed mass m = 891.66 ± 0.26 MeV
in τ de ays mass m = 895.5 ± 0.8 MeV
mass m = 895.81 ± 0.19 MeV (S = 1.4)
hadroprodu ed full width = 50.8 ± 0.9 MeV
in τ de ays full width = 46.2 ± 1.3 MeV
full width = 47.4 ± 0.6 MeV (S = 2.2)

∗ (892) DECAY MODES

Kπ
K0γ
K±γ
K ππ

∼ 100

K

( 2.46 ± 0.21) × 10−3
( 9.9 ± 0.9 ) × 10−4
< 7
× 10−4

95%

Fra tion ( i / )
(42 ± 6 ) %
(28 ± 4 ) %
(16 ± 5 ) %
(11.0 ± 2.0) %
( 3.0 ± 2.0) %
seen

1 (1400) DECAY MODES

K

K ∗ (892) π

Kρ
K f0 (1370)
Kω
K ∗0 (1430) π
γK0

0

K ∗2 (1430)±
K ∗2 (1430)0
K ∗2 (1430)±
K ∗2 (1430)0
K

∗ (1430) DECAY MODES

2

Kπ
K ∗ (892) π
K ∗ (892) π π
Kρ
Kω
K+γ

∗ (1680) DECAY MODES

Fra tion ( i / )

†
†

(94 ± 6 ) %
( 3.0 ± 3.0) %
( 2.0 ± 2.0) %
( 1.0 ± 1.0) %
not seen
seen

402
293
†

284
†

613

oo

℄

2 (1770) DECAY MODES

K

K ππ
K ∗2 (1430) π
K ∗ (892) π
K f2 (1270)
Kφ
Kω
(MeV/ )

mass m = 1425.6 ± 1.5 MeV (S = 1.1)
mass m = 1432.4 ± 1.3 MeV
full width = 98.5 ± 2.7 MeV (S = 1.1)
full width = 109 ± 5 MeV (S = 1.9)
Fra tion ( i / )

S ale fa tor/
p
Con den e level (MeV/ )

S=1.2
S=1.1

619
419
372
318
311
627

S=1.3

486

CL=95%
CL=90%

100
626

Fra tion ( i / )

p

(MeV/ )
781
571
618

I (J P ) = 21 (2− )

Mass m = 1773 ± 8 MeV
Full width = 186 ± 14 MeV

302

p

(MeV/ )
619

(38.7 ± 2.5) %
+5.0 ) %
(31.4 −
2.1
+2.2 ) %
(29.9 −
5.0

K2 (1770) [

46

(S = 1.6)

p

Mass m = 1717 ± 27 MeV (S = 1.4)
Full width = 322 ± 110 MeV (S = 4.2)

(MeV/ )

I (J P ) = 21 (1+ )

Fra tion ( i / )

I (J P ) = 21 (1− )

Kρ

†

I (J P ) = 21 (0+ )

(49.9 ± 1.2) %
(24.7 ± 1.5) %
(13.4 ± 2.2) %
( 8.7 ± 0.8) %
( 2.9 ± 0.8) %
( 2.4 ± 0.5) × 10−3
.4
−3
( 1.5 +3
− 1.0 ) × 10
−
< 7. 2
× 10 4
< 9
× 10−4

K ∗ (1680)

289
307
309
223

539

95%

410
612
305
619

I (J P ) = 21 (2+ )

Kπ

p

95%

(93 ± 10) %

K ∗ (892) π

Kρ
K ∗0 (1430) π
K ∗ (892) π
Kω
K f0 (1370)
γK0

Mass m = 1403 ± 7 MeV
Full width = 174 ± 13 MeV

∗ (1430) DECAY MODES
0

K ωπ
K0γ

I (J P ) = 21 (1+ )

K

K1 (1400)

℄

Kη

Mass m = 1272 ± 7 MeV [l ℄
Full width = 90 ± 20 MeV [l ℄
1 (1270) DECAY MODES

nn

K ∗2 (1430)

K
K

K1 (1270)

%
( 6.6 ± 1.3) %
< 7
%
seen

Kπ

Con den e level (MeV/ )
%

Con den e level (MeV/ )

Mass m = 1425 ± 50 MeV
Full width = 270 ± 80 MeV

p

Fra tion ( i / )

p

Fra tion ( i / )
> 40

K ∗0 (1430) [

225

Charge onjugation × Parity (CP ) or Lepton Family number (LF )
violating modes, or S = 1 weak neutral urrent (S1 ) modes

µ+ µ−

I (J P ) = 21 (1− )

K ∗3 (1780)

Fra tion ( i / )
dominant
seen
seen
seen
seen

I (J P ) = 21 (3− )

Mass m = 1776 ± 7 MeV (S = 1.1)
Full width = 159 ± 21 MeV (S = 1.3)

p

(MeV/ )
794
288
654
55
441
607

MesonSummaryTable
43

K ∗3 (1780) DECAY MODES

Fra tion ( i / )

Kρ
K ∗ (892) π
Kπ
Kη
K ∗2 (1430) π

p

T-violation de ay-rate asymmetry
AT (K 0S K ± π+ π− ) = (− 12 ± 11) × 10−3 [rr ℄
D + form ¯fa tors
¯
f+ (0)¯Vcs ¯ in K 0 ℓ+ νℓ = 0.707 ± 0.013
r1 ≡ a1 /a0 in K 0 ℓ+ νℓ = − 1.7 ± 0.5
r2 ≡ a¯2 /a0¯ in K 0 ℓ+ νℓ = − 14 ± 11
f+ (0)¯Vcd ¯ in π0 ℓ+ νℓ = 0.146 ± 0.007
r1 ≡ a1 /a0 in π0 ℓ+ νℓ = − 1.4 ± 0.9
r2 ≡ a¯2 /a0¯ in π0 ℓ+ νℓ = − 4 ± 5
f+ (0)¯Vcd ¯ in D + → η e + νe = 0.086 ± 0.006
r1 ≡ a1 /a0 in D + → η e + νe = − 1.8 ± 2.2
rv ≡ V(0)/A1 (0) in D + ,D 0 → ρ e + νe = 1.48 ± 0.16
r2 ≡ A2 (0)/A1 (0) in D + ,D 0 → ρ e + νe = 0.83 ± 0.12
rv ≡ V(0)/A1 (0) in K ∗ (892)0 ℓ+ νℓ = 1.51 ± 0.07 (S = 2.2)
r2 ≡ A2 (0)/A1 (0) in K ∗ (892)0 ℓ+ νℓ = 0.807 ± 0.025
r3 ≡ A3 (0)/A1 (0) in K ∗ (892)0 ℓ+ νℓ = 0.0 ± 0.4
∗
0 +
L / T in K (892) ℓ νℓ = 1.13 ± 0.08
∗ (892)0 ℓ+ ν = 0.22 ± 0.06 (S = 1.6)
/
in
K
+ −
ℓ

Con den e level (MeV/ )

(31 ± 9 ) %
(20 ± 5 ) %
(18.8 ± 1.0) %
(30 ± 13 ) %
< 16
%

95%

613
656
813
719
291

I (J P ) = 21 (2− )

K2 (1820) [pp℄

Mass m = 1816 ± 13 MeV
Full width = 276 ± 35 MeV
K2 (1820) DECAY MODES

Fra tion ( i / )

K ∗2 (1430) π
K ∗ (892) π
K f2 (1270)
Kω

p (MeV/ )

seen
seen
seen
seen

327
681
186
638

I (J P ) = 21 (4+)

K ∗4 (2045)

Most de ay modes (other than the semileptoni modes) that involve a neutral K meson are now given as K 0S modes, not as K 0 modes. Nearly always
it is a K 0S that is measured, and interferen e between Cabibbo-allowed
and doubly Cabibbo-suppressed modes an invalidate the assumption that
2 (K 0S ) = (K 0 ).

Mass m = 2045 ± 9 MeV (S = 1.1)
Full width = 198 ± 30 MeV
K ∗4 (2045) DECAY MODES

Fra tion ( i / )

Kπ
K ∗ (892) π π
K ∗ (892) π π π
ρK π
ωK π
φK π
φ K ∗ (892)

p (MeV/ )

(9.9 ± 1.2) %
(9 ± 5 ) %
(7 ± 5 ) %
(5.7 ± 3.2) %
(5.0 ± 3.0) %
(2.8 ± 1.4) %
(1.4 ± 0.7) %

958
802
768
741
738
594
363

CHARMED MESONS
( = ± 1)
D + = d , D 0 = u , D 0 = u, D − = d, similarly for D ∗ 's

C

D±

I (J P ) = 21 (0− )
Mass m = 1869.61 ± 0.10 MeV (S = 1.1)
Mean life τ = (1040 ± 7) × 10−15 s
τ = 311.8 µm
-quark de ays
( → ℓ+ anything)/ ( → anything) = 0.096 ± 0.004 [qq ℄
( → D ∗ (2010)+ anything)/ ( → anything) = 0.255 ± 0.017

CP-violation de ay-rate asymmetries
ACP (µ± ν ) = (8 ± 8)%
ACP (K 0S π± ) = (− 0.41 ± 0.09)%
ACP (K ∓ 2π± ) = (− 0.1 ± 1.0)%
ACP (K ∓ π± π± π0 ) = (1.0 ± 1.3)%
ACP (K 0S π± π0 ) = (0.3 ± 0.9)%
ACP (K 0S π± π+ π− ) = (0.1 ± 1.3)%
ACP (π± π0 ) = (2.9 ± 2.9)%
ACP (π± η) = (1.0 ± 1.5)% (S = 1.4)
ACP (π± η′ (958)) = (− 0.5 ± 1.2)% (S = 1.1)
ACP (K 0S K ± ) = (− 0.11 ± 0.25)%
ACP (K + K − π± ) = (0.36 ± 0.29)%
ACP (K ± K ∗0 ) = (− 0.3 ± 0.4)%
ACP (φπ± ) = (0.09 ± 0.19)% (S = 1.2)
ACP (K ± K ∗0 (1430)0 ) = (8 +− 67 )%
20 )%
ACP (K ± K ∗2 (1430)0 ) = (43 −+ 26
18 )%
ACP (K ± K ∗0 (800)) = (− 12 −+ 13
14 )%
ACP (a0 (1450)0 π± ) = (− 19 −+ 16
±
ACP (φ(1680) π ) = (− 9 ± 26)%
ACP (π+ π− π± ) = (− 2 ± 4)%
ACP (K 0S K ± π+ π− ) = (− 4 ± 7)%
ACP (K ± π0 ) = (− 4 ± 11)%

D + DECAY MODES

S ale fa tor/
p
Con den e level (MeV/ )

Fra tion ( i / )

In lusive modes

e + semileptoni

µ+ anything

K
K 0 anything + K 0 anything
K + anything
K ∗ (892)− anything
K ∗ (892)0 anything
K ∗ (892)0 anything
− anything

η anything
η ′ anything
φ anything

(16.07 ± 0.30) %
(17.6 ± 3.2 ) %
(25.7 ± 1.4 ) %
(61 ± 5 ) %
( 5.9 ± 0.8 ) %
( 6 ±5 ) %
(23 ± 5 ) %
< 6. 6
%
( 6.3 ± 0.7 ) %
( 1.04 ± 0.18) %
( 1.03 ± 0.12) %

CL=90%

{
{
{
{
{
{
{
{
{
{
{

Leptoni and semileptoni modes

e + νe

× 10−6
( 3.82 ± 0.33) × 10−4
< 1. 2
× 10−3
( 8.83 ± 0.22) %
( 9.2 ± 0.6 ) %
( 4.00 ± 0.10) %
( 3.68 ± 0.10) %
< 8. 8

µ+ νµ
τ + ντ

K 0 e + νe
K 0 µ+ νµ
K − π+ e + νe
K ∗ (892)0 e + νe , K ∗ (892)0 →
K − π+
(K − π+ )S −wave e + νe
K ∗ (1410)0 e + νe ,
K ∗ (1410)0 → K − π+
K ∗2 (1430)0 e + νe ,
K ∗2 (1430)0 → K − π+
K − π+ e + νe nonresonant
K − π+ µ+ νµ
K ∗ (892)0 µ+ νµ ,
K ∗ (892)0 → K − π+
K − π+ µ+ νµ nonresonant
K − π+ π0 µ+ νµ
π 0 e + νe
η e + νe
ρ0 e + νe
ρ0 µ+ νµ
ω e+ ν

e
η ′ (958) e + νe
+
φ e νe

CL=90%
CL=90%

( 2.32 ± 0.10) × 10−3
× 10−3

CL=90%

{
{

< 5

× 10−4

CL=90%

{

< 7

× 10−3

CL=90%

864
851
717

< 6

( 3.8 ± 0.4 ) %
( 3.52 ± 0.10) %
( 2.0 ± 0.5 ) × 10−3
× 10−3
( 4.05 ± 0.18) × 10−3
( 1.14 ± 0.10) × 10−3

< 1. 6

.17
−3
( 2.18 +0
− 0.25 ) × 10
−
( 2.4 ± 0.4 ) × 10 3
( 1.82 ± 0.19) × 10−3
( 2.2 ± 0.5 ) × 10−4
< 9
× 10−5

CL=90%

851
825
930
855
774

CL=90%

Fra tions of some of the following modes with resonan es have already
appeared above as submodes of parti ular harged-parti le modes.
( 5.52 ± 0.15) %
K ∗ (892)0 e + νe
K ∗ (892)0 µ+ νµ
( 5.28 ± 0.15) %
K ∗0 (1430)0 µ+ νµ
< 2. 4
× 10−4
CL=90%
CL=90%
K ∗ (1680)0 µ+ ν
< 1. 5
× 10−3
µ

935
932
90
869
865
864
722

770
771
689
657

722
717
380
105

44

MesonSummaryTable
Hadroni modes with a K or K K K

K 0S π +
K 0L π +
K − 2π +
(K − π+ )S −wave π+
K ∗0 (1430)0 π + ,
K ∗0 (1430)0 → K − π +
K ∗ (892)0 π + ,
K ∗ (892)0 → K − π +
K ∗ (1410)0 π + , K ∗0 →
K − π+
K ∗2 (1430)0 π + ,
K ∗2 (1430)0 → K − π +
K ∗ (1680)0 π + ,
K ∗ (1680)0 → K − π +
K − (2π + )I =2
K 0S π + π 0
K 0S ρ+
K ∗ (892)0 π + ,
K ∗ (892)0 → K 0S π 0
K 0S π + π 0 nonresonant
K − 2π + π 0
K 0S 2π + π −
K − 3π + π −
K ∗ (892)0 2π + π − ,
K ∗ (892)0 → K − π +
K ∗ (892)0 ρ0 π + ,
K ∗ (892)0 → K − π +
K ∗ (892)0 a1 (1260)+
K − ρ0 2π +
K − 3π + π − nonresonant
K + 2K 0S
K + K − K 0S π +
π+ π0
2π+ π−
ρ0 π +
π + (π + π − )S −wave
σ π+ , σ → π+ π−
f0 (980) π + ,
f0 (980) → π + π −
f0 (1370) π + ,
f0 (1370) → π + π −
f2 (1270) π + ,
f2 (1270) → π + π −
ρ(1450)0 π + ,
ρ(1450)0 → π + π −
f0 (1500) π + ,
f0 (1500) → π + π −
f0 (1710) π + ,
f0 (1710) → π + π −
f0 (1790) π + ,
f0 (1790) → π + π −
(π+ π+ )S −wave π−
2π+ π− nonresonant
π + 2π 0
2π+ π− π0
η π+ , η → π+ π− π0
ω π+ , ω → π+ π− π0
3π+ 2π−

[ss ℄
[tt ℄

(
(
(
(
(

1.47 ± 0.07) %
1.46 ± 0.05) %
9.13 ± 0.19) %
7.32 ± 0.19) %
1.21 ± 0.06) %

S=2.0

( 1.01 ± 0.11) %

714

not seen

381

[tt ℄

( 2.2 ± 0.7 ) × 10−4

371

[tt ℄

( 2.1 ± 1.1 ) × 10−4

58

[ss ℄

[uu ℄
[uu ℄
[ss ℄

[vv ℄

(
(
(
(
(
(
(
(
(

{

1.41 ± 0.26) %
6.99 ± 0.27) %
4.8 ± 1.0 ) %
1. 3 ± 0 . 6 ) %
9 ± 7 ) × 10−3
5.99 ± 0.18) %
3.12 ± 0.11) %
5.6 ± 0.5 ) × 10−3
1.2 ± 0.4 ) × 10−3

845
677
714

S=1.1

845
816
814
772
645

( 2.2 ± 0.4 ) × 10−3

239

9.0 ± 1.8 ) × 10−3
1.68 ± 0.27) × 10−3
3.9 ± 2.9 ) × 10−4
4.5 ± 2.0 ) × 10−3
2.4 ± 0.6 ) × 10−4

524
772
545
436

(
(
(
(
(

†

Pioni modes

1.19 ± 0.06) × 10−3
3.18 ± 0.18) × 10−3
8.1 ± 1.5 ) × 10−4
1.78 ± 0.16) × 10−3
1.34 ± 0.12) × 10−3
1.52 ± 0.33) × 10−4

925
909
767
909

) × 10−5

{

( 4.9 ± 0.9 ) × 10−4

485

(
(
(
(
(
(

( 8

< 8

±4

× 10−5

{

669

CL=95%

( 1.1 ± 0.4 ) × 10−4

338

{

< 5

× 10−5

CL=95%

{

< 6

× 10−5

CL=95%

{

< 1.2

× 10−4

CL=95%
CL=95%

909
909
910
883
848
763
845

< 1.1
× 10−4
( 4.6 ± 0.4 ) × 10−3

( 1.13 ± 0.08) %
( 8.0 ± 0.5 ) × 10−4
< 3
× 10−4
( 1.61 ± 0.16) × 10−3

CL=90%

Fra tions of some of the following modes with resonan es have already
appeared above as submodes of parti ular harged-parti le modes.
( 3.53 ± 0.21) × 10−3
η π+
( 1.38 ± 0.35) × 10−3
η π+ π0
CL=90%
ω π+
< 3.4
× 10−4
η ′ (958) π +
( 4.67 ± 0.29) × 10−3
η ′ (958) π + π 0
( 1.6 ± 0.5 ) × 10−3

K + K 0S
K + K − π+

863
863
846
846
382

848
830
764
681
654

Hadroni modes with a K K pair

φπ+ , φ → K + K −

K + K ∗ (892)0 ,
K ∗ (892)0 → K − π +

[ss ℄

( 2.83 ± 0.16) × 10−3
( 9.54 ± 0.26) × 10−3
.08
−3
( 2.65 +0
− 0.09 ) × 10
.09
−3
( 2.45 +0
− 0.14 ) × 10

S=2.2
S=1.1

793
744
647
613

K + K ∗0 (1430)0 ,
K ∗0 (1430)0 → K − π +

K + K ∗2 (1430)0 , K ∗2 →
K − π+
+
K K ∗0 (800), K ∗0 → K − π +
a0 (1450)0 π + , a00 →
K+K−
φ(1680) π+ , φ → K + K −

{

.2
−4
( 1.6 +1
− 0.8 ) × 10

{

.4
−4
( 6.7 +3
− 2.1 ) × 10
+7
.
0
( 4.4 − 1.8 ) × 10−4

{
{

.0
−5
( 4.9 +4
− 1.9 ) × 10
not seen
( 1.75 ± 0.18) × 10−3
( 2.40 ± 0.18) × 10−3
( 2.2 ± 1.2 ) × 10−4

K + K − π + nonresonant
K + K 0S π + π −
K 0S K − 2π +
K + K − 2π + π −
φπ+ π 0
φρ+

( 1.79 ± 0.34) × 10−3

{
744
678
678
600

A few poorly measured bran hing fra tions:
( 2.3 ± 1.0 ) %
%
+0.7 ) %
( 1.5 −
0. 6
( 1.6 ± 0.7 ) %

< 1. 5

K + K − π + π 0 non-φ
K ∗ (892)+ K 0S

CL=90%

619
260
682
612

Doubly Cabibbo-suppressed modes

K + π0
K+η
K + η ′ (958)
K + π+ π−
K + ρ0
K ∗ (892)0 π + , K ∗ (892)0 →
K + π−
K + f0 (980), f0 (980) →
π+ π−
K ∗2 (1430)0 π + , K ∗2 (1430)0 →
K + π−
K + π + π − nonresonant
2K + K −

(
(
(
(
(
(

1.83 ± 0.26) × 10−4
1.08 ± 0.17) × 10−4
1.76 ± 0.22) × 10−4
5.27 ± 0.23) × 10−4
2.0 ± 0.5 ) × 10−4
2.5 ± 0.4 ) × 10−4

S=1.4

864
776
571
846
679
714

( 4.7 ± 2.8 ) × 10−5

{

( 4.2 ± 2.9 ) × 10−5

{

not seen
( 8.7 ± 2.0 ) × 10−5

846
550

C = 1 weak neutral urrent (C1 ) modes, or
Lepton Family number (LF ) or Lepton number (L) violating modes

π+ e + e −

[xx ℄
C1

(
<

[xx ℄
C1

(
<

[yy ℄ <
[yy ℄ <
LF
LF
LF
LF
L
L
L
L
L
L
L
L

D0

× 10−6
.
4
+1
1.7 − 0.9 ) × 10−6
7. 3
× 10−8
1.8 ± 0.8 ) × 10−6
5. 6
× 10−4
1. 0
× 10−6
4. 3
× 10−6
2. 9
× 10−6
3. 6
× 10−6
1. 2
× 10−6
2. 8
× 10−6
1. 1
× 10−6
2. 2
× 10−8
2. 0
× 10−6
5. 6
× 10−4
9
× 10−7
1. 0
× 10−5
1. 9
× 10−6
8. 5
× 10−4

< 1. 1

C1

π+ φ , φ → e + e −
π + µ+ µ−
π + φ, φ → µ+ µ−
ρ+ µ+ µ−
K + e+ e−
K + µ+ µ−
π + e + µ−
π + e − µ+
K + e + µ−
K + e − µ+
π − 2e +
π − 2µ+
π − e + µ+
ρ− 2µ+
K − 2e +
K − 2µ+
K − e + µ+
K ∗ (892)− 2µ+

<
<
<
<
<
<
<
<
<
<
<
<

CL=90%

930

CL=90%

918

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

757
870
856
927
927
866
866
930
918
927
757
870
856
866
703

{

I (J P ) = 21 (0− )

Mass m = 1864.84 ± 0.07 MeV (S = 1.1)
m D ± − m D 0 = 4.77 ± 0.08 MeV
Mean life τ = (410.1 ± 1.5) × 10−15 s
τ = 122.¯9 µm
¯
¯m 0 − m 0 ¯ = (0.95 + 0.41 ) × 1010 h
 s− 1
− 0.44
D
D
1

2

+ 0.14 ) × 10−2
( D 0 { D 0 )/ = 2y = (1.29 −
0.18
2
¯ 1¯
.
12
+
0
¯q/p¯ = 0.92
− 0.09
A = (− 0.125 ± 0.526) × 10−3
+ 0.23
+
−
K π relative strong phase: os δ = 0.81 −
0.19
11
+
−
+
0
K π π oheren e fa tor RK π π 0 = 0.78 − 00..25

32 ◦
K − π + π 0 average relative strong phase δ K π π = (239 +
− 28 )
+ 0.24
K − π − 2π + oheren e fa tor RK 3π = 0.36 −
0.30
60 ◦
K − π − 2π + average relative strong phase δ K 3π = (118 +
− 50 )
0
+
−
KS K π
oheren e fa tor RK 0 K π = 0.73 ± 0.08
0

S

{

45

MesonSummaryTable
K 0S K + π− average relative strong phase δK S K π = (8 ± 15)◦
K ∗ K oheren e fa tor RK ∗ K = 1.00 ± 0.16
K ∗ K average relative strong phase δK ∗ K = (26 ± 16)◦
CP-violation de ay-rate asymmetries (labeled by the D 0 de ay)
ACP (K + K − ) = (− 0.21 ± 0.17)%
ACP (2K 0S ) = (− 23 ± 19)%
ACP (π+ π− ) = (0.22 ± 0.21)%
ACP (2π0 ) = (0 ± 5)%
ACP (π+ π− π0 ) = (0.3 ± 0.4)%
ACP (ρ(770)+ π− → π+ π− π0 ) = (1.2 ± 0.9)% [zz ℄
ACP (ρ(770)0 π0 → π+ π− π0 ) = (− 3.1 ± 3.0)% [zz ℄
ACP (ρ(770)− π+ → π+ π− π0 ) = (− 1.0 ± 1.7)% [zz ℄
ACP (ρ(1450)+ π− → π+ π− π0 ) = (0 ± 70)% [zz ℄
ACP (ρ(1450)0 π0 → π+ π− π0 ) = (− 20 ± 40)% [zz ℄
ACP (ρ(1450)− π+ → π+ π− π0 ) = (6 ± 9)% [zz ℄
ACP (ρ(1700)+ π− → π+ π− π0 ) = (− 5 ± 14)% [zz ℄
ACP (ρ(1700)0 π0 → π+ π− π0 ) = (13 ± 9)% [zz ℄
ACP (ρ(1700)− π+ → π+ π− π0 ) = (8 ± 11)% [zz ℄
ACP (f0 (980) π0 → π+ π− π0 ) = (0 ± 35)% [zz ℄
ACP (f0 (1370) π0 → π+ π− π0 ) = (25 ± 18)% [zz ℄
ACP (f0 (1500) π0 → π+ π− π0 ) = (0 ± 18)% [zz ℄
ACP (f0 (1710) π0 → π+ π− π0 ) = (0 ± 24)% [zz ℄
ACP (f2 (1270) π0 → π+ π− π0 ) = (− 4 ± 6)% [zz ℄
ACP (σ(400) π0 → π+ π− π0 ) = (6 ± 8)% [zz ℄
ACP (nonresonant π+ π− π0 ) = (− 13 ± 23)% [zz ℄
ACP (2π+ 2π− )
ACP (K + K − π0 ) = (− 1.0 ± 1.7)%
ACP (K ∗ (892)+ K − → K + K − π0 ) = (− 0.9 ± 1.3)% [zz ℄
ACP (K ∗ (1410)+ K − → K + K − π0 ) = (− 21 ± 24)% [zz ℄
ACP ((K + π0 )S −wave K − → K + K − π0 ) = (7 ± 15)% [zz ℄
ACP (φ(1020) π0 → K + K − π0 ) = (1.1 ± 2.2)% [zz ℄
ACP (f0 (980) π0 → K + K − π0 ) = (− 3 ± 19)% [zz ℄
ACP (a0 (980)0 π0 → K + K − π0 ) = (− 5 ± 16)% [zz ℄
ACP (f ′2 (1525) π0 → K + K − π0 ) = (0 ± 160)% [zz ℄
ACP (K ∗ (892)− K + → K + K − π0 ) = (− 5 ± 4)% [zz ℄
ACP (K ∗ (1410)− K + → K + K − π0 ) = (− 17 ± 29)% [zz ℄
ACP (( K − π0 )S −wave K + → K + K − π0 ) = (− 10 ± 40)% [zz ℄
ACP (K 0S π0 ) = (− 0.27 ± 0.21)%
ACP (K 0S η) = (0.5 ± 0.5)%
ACP (K 0S η′ ) = (1.0 ± 0.7)%
ACP (K 0S φ) = (− 3 ± 9)%
ACP (K − π+ ) = (0.1 ± 0.7)%
ACP (K + π− ) = (0.0 ± 1.6)%
ACP (K − π+ π0 ) = (0.2 ± 0.9)%
ACP (K + π− π0 ) = (0 ± 5)%
ACP (K 0S π+ π− ) = (− 0.1 ± 0.8)%
ACP (K ∗ (892)− π+ → K 0S π+ π− ) = (0.4 ± 0.5)%
ACP (K ∗ (892)+ π− → K 0S π+ π− ) = (1 ± 6)%
ACP (K 0 ρ0 → K 0S π+ π− ) = (− 0.1 ± 0.5)%
ACP (K 0 ω → K 0S π+ π− ) = (− 13 ± 7)%
ACP (K 0 f0 (980) → K 0S π+ π− ) = (− 0.4 ± 2.7)%
ACP (K 0 f2 (1270) → K 0S π+ π− ) = (− 4 ± 5)%
ACP (K 0 f0 (1370) → K 0S π+ π− ) = (− 1 ± 9)%
ACP (K 0 ρ0 (1450) → K 0S π+ π− ) = (− 4 ± 10)%
ACP (K 0 f0 (600) → K 0S π+ π− ) = (− 3 ± 5)%
ACP (K ∗ (1410)− π+ → K 0S π+ π− ) = (− 2 ± 9)%
ACP (K ∗0 (1430)− π+ → K 0S π+ π− ) = (4 ± 4)%
ACP (K ∗0 (1430)+ π− → K 0S π+ π− ) = (12 ± 15)%
ACP (K ∗2 (1430)− π+ → K 0S π+ π− ) = (3 ± 6)%
ACP (K ∗2 (1430)+ π− → K 0S π+ π− ) = (− 10 ± 32)%
ACP (K ∗ (1680)− π+ → K 0S π+ π− )
ACP (K − π+ π+ π− ) = (0.7 ± 1.0)%
ACP (K + π− π+ π− ) = (− 2 ± 4)%
ACP (K + K − π+ π− ) = (− 8 ± 7)%
ACP (K ∗1 (1270)+ K − → K ∗0 π+ K − ) = (− 1 ± 10)%
ACP (K ∗1 (1270)− K + → K ∗0 π− K + ) = (− 10 ± 32)%
ACP (K ∗1 (1270)+ K − → ρ0 K + K −) = (− 7 ± 17)%
ACP (K ∗1 (1270)− K + → ρ0 K − K +) = (10 ± 13)%
ACP (K ∗ (1410)+ K − → K ∗0 π+ K − ) = (− 20 ± 17)%
ACP (K ∗ (1410)− K + → K ∗0 π− K + ) = (− 1 ± 14)%
ACP (K ∗0 K ∗0 S-wave) = (10 ± 14)%
ACP (φρ0 S-wave) = (− 3 ± 5)%
ACP (φρ0 D-wave) = (− 37 ± 19)%
ACP (φ ( π+ π− )S −wave ) = (− 9 ± 10)%
ACP ((K − π+ )P −wave (K + π− )S −wave ) = (3 ± 11)%
0

CP-violation asymmetry di eren e
ACP = ACP (K + K −) − ACP (π+ π− ) = (− 0.46

±

0.25)% (S = 1.8)
T-violation de ay-rate asymmetry
AT (K + K − π+ π− ) = (1 ± 7) × 10−3 [rr ℄
CPT-violation de ay-rate asymmetry
ACPT (K ∓ π± ) = 0.008 ± 0.008
Form fa tors
rV ≡ V(0)/A1 (0) in D 0 → K ∗(892)− ℓ+ νℓ = 1.7 ± 0.8
r2 ≡ A2 (0)/A1(0) in D 0 → K ∗(892)− ℓ+ νℓ = 0.9 ± 0.4
f+ (0)¯in D¯ 0 → K − ℓ+ νℓ = 0.727 ± 0.011
f+ (0)¯Vcs ¯ in D 0 → K − ℓ+ νℓ = 0.726 ± 0.009
r1 ≡ a1 /a0 in D 0 → K − ℓ+ νℓ = − 2.65 ± 0.35
r2 ≡ a¯1 /a0¯ in D 0 → K − ℓ+ νℓ = 13 ± 9
f+ (0)¯Vcd ¯ in D 0 → π− ℓ+ νℓ = 0.152 ± 0.005
r1 ≡ a1 /a0 in D 0 → π− ℓ+ νℓ = − 2.8 ± 0.5
r2 ≡ a1 /a0 in D 0 → π− ℓ+ νℓ = 6 ± 3.0
Most de ay modes (other than the semileptoni modes) that involve a neutral K meson are now given as K 0S modes, not as K 0 modes. Nearly always
it is a K 0S that is measured, and interferen e between Cabibbo-allowed
and doubly Cabibbo-suppressed modes an invalidate the assumption that
2 (K 0S ) = (K 0 ).

D 0 DECAY MODES

Topologi al modes

0-prongs
2-prongs
4-prongs
6-prongs

[aaa℄

[bbb℄
[ ℄

(15
(70
(14.5
( 6. 4

{
{
{
{

± 6

)%
)%
)%
± 1.3 ) × 10−4

± 6
± 0.5

In lusive modes

e + anything

anything
K anything
K 0 anything + K 0 anything
K + anything
K ∗ (892)− anything
K ∗ (892)0 anything
K ∗ (892)+ anything
K ∗ (892)0 anything
η anything
η ′ anything
φ anything
µ+

[ddd ℄

−

K − e + νe
K − µ+ νµ
K ∗ (892)− e + νe
K ∗ (892)− µ+ νµ
K − π0 e + νe
K 0 π− e + νe
K − π+ π− e + νe
K1 (1270)− e + νe
K − π+ π− µ+ νµ
( K ∗ (892) π )− µ+ νµ
π − e + νe
π − µ+ νµ
ρ− e + νe

S ale fa tor/ p
Con den e level(MeV/ )

Fra tion ( i / )

( 6.49
( 6. 7
(54.7
(47
( 3.4
(15
( 9
< 3. 6
( 2. 8
( 9.5
( 2.48
( 1.05

± 0.11 ) %
± 0.6
± 2.8
± 4
± 0.4
± 9
± 4
± 1.3
± 0.9
± 0.27
± 0.11

Semileptoni modes
(
(
(
(

3.55
3.31
2.16
1.91

( 1.6

)%
)%
)%
)%
)%
)%
%
)%
)%
)%
)%

± 0.05 ) %

S=1.3

CL=90%

S=1.2

± 0.24 ) %

867
864
719
714

+ 1. 3
− 0.5

861

± 0.13 ) %
± 0.16 ) %

)%

+ 0. 9
− 0.7 ) %
+ 1.4 ) × 10−4
( 2. 8 −
1.1
+ 4.0 ) × 10−4
( 7. 6 −
3.1
< 1. 2
× 10−3
< 1. 4
× 10−3
( 2.89 ± 0.08 ) × 10−3
( 2.37 ± 0.24 ) × 10−3
( 1.77 ± 0.16 ) × 10−3

860

( 2.7

Hadroni modes with one K

K − π+
K + π−
K 0S π0
K 0L π0
K 0S π+ π−
K 0S ρ0
K 0S ω , ω → π+ π−
K 0S (π+ π− )S −wave
K 0S f0 (980),
f0 (980) → π+ π−

[ss ℄

( 3.88 ±
( 1.380 ±
( 1.19 ±
(10.0 ±
( 2.83 ±
( 6. 3 +
( 2. 1
( 3. 4

{
{
{
{
{
{
{
{
{
{
{
{

0.05 ) %
0.028) × 10−4
0.04 ) %
0.7 ) × 10−3
0.20 ) %
0. 7
−3
− 0.8 ) × 10
± 0.6 ) × 10−4
± 0.8 ) × 10−3

+ 0.40 ) × 10−3
( 1.22 −
0.24

843
498
CL=90%
CL=90%
S=1.1

821
692
927
924
771

S=1.1

861
861
860
860
842

S=1.1

674
670
842
549

46

MesonSummaryTable
K 0S f0
( 2.8
→ π+ π−
f0
K 0S f2
(9
→ π+ π−
f2
− π+
K∗
( 1.66
− → K 0 π−
K∗
S
− π+
K ∗0
( 2.70
− → K 0 π−
K ∗0
S
− π+
( 3.4
K ∗2
∗
− → K 0 π−
K2
S
− π+
K∗
(4
− → K 0 π−
K∗
S
+ π−
K∗
[eee ℄ ( 1.14
+ → K 0S π+
K∗
+ π−
[eee ℄ < 1.4
K ∗0
+ → K 0 π+
K ∗0
S
+ π−
[eee ℄ < 3.4
K ∗2
+ → K 0 π+
K ∗2
S
( 2.5
K 0S π+ π−
K − π+ π0
[ss ℄ (13.9
(10.8
K − ρ+
+
( 7.9
K−ρ
+ → π+ π0
ρ
− π+
K∗
( 2.22
− → K − π0
K∗
0
∗
0
K
π
( 1.88
0 → K − π+
K∗
− π+
K ∗0
( 4. 6
− → K − π0
K ∗0
0 π0
( 5.7
K ∗0
∗
0 → K − π+
K0
− π+
K∗
( 1. 8
− → K − π0
K∗
K − π+ π0
( 1.11
0
K S π0
( 9.1
( 2.6
K 0S π0 S
0 π0
K∗
( 7. 8
0 → K 0 π0
K∗
0 π0 K ∗S0 →
K∗
(4
K 0S π0
0 π 0 K ∗0 →
K∗
( 1.0
K 0S π0
K 0S f2
f2 → π0
( 2. 3
K 0S
K 0S → π0
( 3.2
[ss ℄ ( 8.08
K − π+ π−
K − π + ρ0
( 6.75
( 5.1
K − π + ρ0
0 ρ0
( 1.05
K∗
0 → K − π+
K∗
+
K − a1
( 3.6
+ → π+ π−
a1
∗
+
0
−
( 1. 6
K
π π
0 → K − π+
K∗
0 π+ π−
( 9. 9
K∗
0 → K − π+
K∗
−
+
π
K1
[ f ℄ ( 2.9
− → K − π+ π−
K1
K − π+ π−
( 1.88
[ggg ℄ ( 5.2
K 0S π+ π− π0
( 1.02
K 0S η η → π+ π− π0
K 0S ω ω → π+ π− π0
( 9.9
( 4.2
K − π+ π− π0
0 π+ π− π0
( 1. 3
K∗
∗
−
+
0
K
→ K π
( 2. 7
K − π+ ω ω → π+ π− π0
0ω
K∗
( 6.5
0 → K − π+
K∗
−
+
0
ω→ π π π
K 0S η π0
( 5.5
0
( 6.5
→ η π0
K S a0
a0
(1370) ,

(1370)

(1270) ,

(1270)

,

(892)

(892)

(1430)

,

(1430)

,

(1430)

(1430)

,

(1680)

(1680)

(892)

,

(892)

(1430)

,

+ 0.9 ) × 10−3
1.3

+10
− 6

nonresonant

(1700)

,

(1700)
(892)

,

(892)

(892)

,

+ 0.15 ) %
0.17
+ 0.40
−3
− 0.34 ) × 10

,

(1430)

,

(1430)

(1430)

,

(1680)

(1680)

nonresonant

2

)-

(2

-wave
,

(892)

2

×

+ 6.0
1.6
0.5
± 0.7
± 1.7
−
±

3-body
,

(1260)

,

total,

3-body,

,

nonresonant

813
813
772
670
771
643

0.5 ) %
3.0 ) × 10−3

605
410

1.1 ) × 10−3
2.0 ) × 10−3

721

(892)

(892)

±
±

484

,

(892)

(980) ,

S=1.3 813
609
609
416

0.26 ) %
0. 6 ) %
0.09 ) × 10−3
0.5 ) × 10−3
0.4 ) %
0.6 ) %

±

±
±

,

{

685

±

(980)

±
±

(892)

(892)

2

,

(892)

(892)

,

(892)

nonresonant

2

2

±

( 1. 6

±

0.6 ) × 10−3

230

1. 2
( 2. 2

±

× 10−3
CL=90% 768
713
0.6 ) × 10−4

±

{

{

642

,

no

3

{

768

±

<

2

Fra tions of many of the following modes with resonan es have already
appeared above as submodes of parti ular harged-parti le modes. (Modes
for whi h there are only upper limits and K ∗ (892) ρ submodes only appear
below.)
( 4.79 ± 0.30 ) × 10−3
K 0S η
( 1.11 ± 0.06 ) %
K 0S ω
K 0S η′
( 9.4 ± 0.5 ) × 10−3
+
K − a1
( 7.8 ± 1.1 ) %
+
< 2
× 10−3
CL=90%
K − a2
0 π+ π−
K∗
( 2.4 ± 0.5 ) %
0 π+ π−
K∗
( 1.48 ± 0.34 ) %
0 ρ0
( 1.58 ± 0.34 ) %
K∗
0 ρ0
K∗
( 1.7 ± 0.6 ) %
0 ρ0 S
( 3.0 ± 0.6 ) %
K∗
0 ρ0 S
CL=90%
K∗
< 3
× 10−3
0 ρ0 P
CL=90%
K∗
< 3
× 10−3
0
∗
0
K
ρ D
( 2.1 ± 0.6 ) %
− π+
K1
[ f ℄ ( 1.6 ± 0.8 ) %
− π+
K1
< 1. 2
%
CL=90%
0 π+ π− π0
( 1.9 ± 0.9 ) %
K∗
−
+
K π ω
( 3.0 ± 0.6 ) %
0ω
K∗
( 1.1 ± 0.5 ) %
K − π+ η′
( 7.5 ± 1.9 ) × 10−3
0 η′
CL=90%
K∗
< 1. 1
× 10−3
K
( 4.47 ± 0.34 ) × 10−3
K 0S K + K −
0 a0 → K + K −
K 0S a0
( 3.0 ± 0.4 ) × 10−3
0
+ a+ → K + K 0
K − a0
( 6.0 ± 1.8 ) × 10−4
S
0
− a− → K − K 0
CL=95%
<
1. 1
× 10−4
K + a0
S
0
K 0S f0
f0 → K + K −
< 9
CL=95%
× 10−5
( 2.05 ± 0.16 ) × 10−3
K 0S φ φ → K + K −
K 0S f0
f0 → K + K −
( 1.7 ± 1.1 ) × 10−4
K 0S
( 9.1 ± 1.3 ) × 10−4
( 2.21 ± 0.31 ) × 10−4
K + K − π+
0
( 4.4 ± 1.7 ) × 10−5
K+ K− K∗
0 → K − π+
K∗
K − π+ φ φ → K + K −
( 4.0 ± 1.7 ) × 10−5
0
φK∗
( 1.06 ± 0.20 ) × 10−4
φ → K+K−
0 → K − π+
K∗
K + K − π+
( 3.3 ± 1.5 ) × 10−5
( 6.0 ± 1.3 ) × 10−4
K 0S K ± π∓
(958)

(1320)

(892)

total

(892)

3-body

(892)

(892)

transverse

(892)

-wave

(892)

-wave long.

(892)

-wave

(892)

-wave

(1270)
(1400)
(892)

(892)

(958)

(892)

(958)

Hadroni

(980)

modes with three

's

,

772
670
565
327
198
685
685
417
417
417
417
417
417
484
386
643
605
410
479
119
544
{

(980)

,

{

(980)

,

{

,

3

2

{

2.3 ) × 10−3
0.3 ) × 10−3

±

, no

0.5 ) × 10−3
0.31 ) × 10−3
0.7 ) × 10−3
8 ) × 10−4

( 2.69
( 1. 1
(5

2

2

±

(1370) ,

{

685

±

(892)

{

0.4 ) %

±

( 1. 6

,

(892)

(980) ,

±

±

,

711

327

,

,

{

0.6 ) %

,

2

0.4 ) × 10−3

46

±

(1270)

2

) × 10−5

1.1 ) × 10−4
± 1.1 ) × 10−4
+ 0.21
− 0.19 ) %
± 0.33 ) %
± 2.3 ) × 10−3
± 0.23 ) %

(892)

(1270)

23

±

(892)

(892)

711

844
S=2.2 843

2

(892)

711

+ 0.50 ) %
0.19
± 1.1 ) × 10−3
± 0.7 ) × 10−3
± 0.7 ) × 10−3

(892)

(1260)

†

379

±

(892)

842
S=1.7 844
675

+ 5.0
−3
− 1.5 ) × 10
± 0.7 ) × 10−3
−

(892)

(1260)

378

,

total

) × 10−4
)%
)%
) × 10−3

{

2.1 ) × 10−3

±

(1680)

2

10−5 CL=95%

+ 0.40
− 0.19 ) %
± 0.23 ) %

±

2

46

{

,

, one

367

+ 0.60 ) × 10−4
711
− 0.34
CL=95%
× 10−5

(1430)

2

378

+ 1.9 ) × 10−4
1.0
± 4
) × 10−4

(892)

(1270) ,

711

−

(892)

(1430)

262

−

,

(1430)

0η
K∗
0 → K0 π
K∗
S
K 0S π+ π−
0
+
−
−
0
K∗
KS ρ π π
− π+ π−
K∗
− → K 0 π−
K∗
S
ρ0
− ρ0 π +
K∗
− → K 0 π−
K∗
S
K 0S π+ π−
K − π+ π−
0

) × 10−5

(1430)

(1430)

†

−

(892)

,

(892)
,

(892)

,

{

520

{

539
434

†

422
†

,

(892)

2

nonresonant

2

π+ π−
0
2π
π+ π− π0
ρ+ π −
ρ0 π 0
ρ− π +
ρ(1450)+ π − , ρ(1450)+ →
π+ π0
ρ(1450)0 π 0 , ρ(1450)0 →
π+ π−
ρ(1450)− π + , ρ(1450)− →
π− π0
ρ(1700)+ π − , ρ(1700)+ →
π+ π0
ρ(1700)0 π 0 , ρ(1700)0 →
π+ π−
ρ(1700)− π + , ρ(1700)− →
π− π0
f0 (980) π0 , f0 (980) →
π+ π−
f0 (500) π0 , f0 (500) →
π+ π−

Pioni

modes

( 1.402 ±
( 8.20 ±
( 1.43 ±
( 9. 8 ±
( 3.72 ±
( 4.96 ±
( 1. 6 ±
( 4. 3

±

0.026) × 10−3
0.35 ) × 10−4
0.06 ) %
0.4 ) × 10−3
0.22 ) × 10−3
0.24 ) × 10−3
2.0 ) × 10−5
1.9 ) × 10−5
0.4 ) × 10 4
1.4 ) × 10−4
1.7 ) × 10−4

( 2. 6

±

( 5. 9

±

( 7. 2

±

( 4. 6

±

( 3. 6

±

1.1 ) × 10−4
0.8 ) × 10−5

( 1.18

±

0.21 ) × 10−4

−

434
427

S=1.1 922
923
S=1.9 907
764
764
764
{

{

{

{

{

{

{

{

47

(1370)
π 0 , f0 (1370) →
π+ π−
f0 (1500) π 0 , f0 (1500) →
π+ π−
f0 (1710) π 0 , f0 (1710) →
π+ π−
f2 (1270) π 0 , f2 (1270) →
π+ π−
π + π − π 0 nonresonant
3π0
2π+ 2π−
a1 (1260)+ π − , a+
1 →
2π+ π− +total− +
a1 (1260) π , a1 →
ρ0 π + S-wave
a1 (1260)+ π − , a+
1 →
ρ0 π + D-wave
a1 (1260)+ π − , a+
1 →
σ π+
2ρ0 total
2ρ00 , parallel heli ities
2ρ , perpendi ular heli ities
2ρ0 , longitudinal
heli ities
Resonant (π+ π−) π+ π−
3-body total
σ π+ π−
f0 (980) π + π − , f0 →
π+ π−
f2 (1270) π + π − , f2 →
π+ π−
π + π − 2π 0
f0

η π0
ω π0
π+ π− π0
η π+ π−
ω π+ π−
π+ π−
η′
π0
η′
π+ π−
η
η η′

2 2

3 3
(958)
(958)
2
(958)

(892)
(892)

( 1.89
( 1.20
< 3.5
( 7.42
( 4.45

±
±
±
±
±

1.5 ) × 10 5
0.20 ) × 10−4
−

907
0.35 ) × 10−4
CL=90% 908
× 10−4
S=1.1 880
0.21 ) × 10−3
0.31 ) × 10−3
{

±

0.25 ) × 10−3

{

( 1.9

±

0.5 ) × 10−4

{

( 6.2

±

{

( 1.25
( 1.48

±
±

( 6.1
( 1.8

±
±

0.7 ) × 10−4
0.13 ) × 10−3
3.2 ) × 10−5
0.6 ) × 10−4
0.10 ) × 10−3
0.12 ) × 10−3
0.9 ) × 10−4
0.5 ) × 10−4

( 3.6

±

0.6 ) × 10−4

( 1.82
( 8.2
( 4. 8

( 1.00
[hhh℄ ( 6.8
[hhh℄ < 2.6
( 4.1
[hhh℄ ( 1.09
[hhh℄ ( 1.6
( 4.2
( 9.0
( 4.5
( 1.67
( 1.05

,

( 2.1
< 1.8

(892)
(892)

)

)
(
)
(1270)
(1270)
(1270)
(1270)
(1270)
(1270)
(1270)
(1270)

,
,

,

±
±
±

±
±
±
±
±
±
±
±
±
±

,
,
,
,

±
±
±

±

( 3.29
( 1.46

±

( 5.2

±

,

( 2.34
( 1. 3
( 3.5
( 6.4
< 5.9
( 2.43
( 2.50

,

( 9.3
( 8.3
( 1.48

,

{
{
{
{

( 3.21

,

)

)
)

±

( 3.96
( 1.7
( 3.5
< 5

(892) ,
(892) ,
(
)
(
)
(980) ,
,
(
(
(
(

( 5.6

2.1 ) × 10−5
1.5 ) × 10−5

±

±
±
±
±
±
±
±
±
±

( 2.6

±

( 1.8

±

( 1.14

±

( 2.2

±

( 1.46

±

518

{
{
{
{
{
{
{

0.09 ) %
882
0.7 ) × 10−4
846
CL=90% 761
× 10−4
−
3
844
0.5 ) × 10
0.16 ) × 10−3
827
738
0.5 ) × 10−3
795
1.2 ) × 10−4
678
1.4 ) × 10−4
−
4
650
1.7 ) × 10
754
0.20 ) × 10−3
537
0.26 ) × 10−3

Hadroni modes with a K K pair

2

(

±

( 4.4

K+K−
K 0S
K 0S K − π +
0 K 0 K ∗0 →
K∗
S
K − π+
K 0S K + π −
0 K 0S K ∗0 →
K∗
K + π−
K + K − π0
+K− K∗
+→
K∗
K + π0
−K+ K∗
− →
K∗
K − π0
K + π 0 S −wave K −
K − π 0 S −wave K +
π 0 f0 → K + K −
f0
φπ0 φ → K + K −
K 0S π 0
K + K − π+ π−
φ π+ π − S −wave φ →
K+K−
φρ0 S −wave φ → K + K −
φρ0 D −wave φ → K + K −
K ∗0 K ∗0 S −wave K ∗0 →
K ± π∓
K − π + P −wave
K + π − S −wave
+K−
K1
+ → K ∗0 π +
K1
+K−
K1
+ → ρ0 K +
K1
−K+
K1
− → K ∗0 π −
K1
−K+
K1
− → ρ0 K −
K1

2

( 5.3

0.08 ) × 10−3
S=1.4
S=2.5
0.4 ) × 10−4
S=1.2
0.5 ) × 10−3
CL=90%
× 10−4
S=1.3
0.4 ) × 10−3
× 10−4
CL=90%
0.14 ) × 10−3
0.07 ) × 10−3
0.4 ) × 10−4
0.17 ) × 10−3
0.4 ) × 10−4
0.6 ) × 10−4
0.4 ) × 10−4
× 10−4
0.12 ) × 10−3
0.33 ) × 10−4
1.2 ) × 10−4
2.3 ) × 10−5
0.30 ) × 10−4
0.5 ) × 10−4
0.5 ) × 10−4
0.26 ) × 10−4
1.2 ) × 10−5
0.25 ) × 10−4

791
789
739
608
739
608
743

{
{

743
743

{
{

740
677
614
250

{
{
{
{
{
{
{

+ K −,
(1410)
K ∗ (1410)+ →
K ∗ (1410)− K + ,
K ∗ (1410)− →

K∗

K 0S π + π −
K 0S K − π + π −
K + K − π+ π− π0

2

MesonSummaryTable
K ∗0 π +
K ∗0 π −

2

<

( 1.02

±

( 1.14

±

( 1.23
1. 5
( 3. 1

±
±

0.26 ) × 10−4
0.25 ) × 10−4

{
{

0.24 ) × 10−3
673
CL=90% 595
× 10−4
2.0 ) × 10−3
600

Other K K X modes. They in lude all de ay modes of the φ, η, and ω.
( 1.4 ± 0.5 ) × 10−4
489
CL=90% 238
< 2.1
× 10−3

φη
φω

Radiative modes

ρ0 γ
ωγ
φγ
K∗

<

<

(892)0 γ

×
×

K + π− π0
D0
K + π− π0
K + π+ π−
D0
K + π+ π−
µ−
D0

10−5
10−5
( 1.47 ± 0.07 ) × 10−4
( 1.31 ± 0.08 ) × 10−4
< 1. 6
× 10−5
< 1. 8
× 10−4
.
60
+
0
( 1.14 − 0.34 ) × 10−4
<
<

via
DC

via DCS
via
in
K ∗ (892)+ π − ,
DC
K ∗ (892)+ → K 0S π +
K ∗0 (1430)+ π − ,
DC
K ∗0 (1430)+ → K 0S π +
DC
K ∗2 (1430)+ π − ,
K ∗2 (1430)+ → K 0S π +
via
2
2 via
anything via

±
±

10−4 CL=90% 771
10−4 CL=90% 768
654
0.35 ) 10−5
0.34 ) × 10−4
719
×

Doubly Cabibbo suppressed (DC ) modes or
C = 2 forbidden via mixing (C2M ) modes

K + ℓ− ν ℓ
D0
+ e− νe
K+ K∗
D0
K + π−
K + π−
K + π−
D0
K 0S π + π − D 0 → D 0

via
or (892)

2.4
2.4
( 2.70
( 3.27

DC

DC

2. 2
6

×
×

CL=90%
CL=90%

S=2.8 861

{

CL=95% 861
CL=95% {
711

<

1. 4

×

10−5

{

<

3. 4

×

10−5

{

( 3.04
( 7. 3
( 2.62
< 4
< 4

±
±
±

844
0.17 ) × 10−4
0.5 ) × 10−4
{
813
0.11 ) × 10−4
× 10−4
CL=90% 812
CL=90% {
× 10−4

C = 1 weak neutral urrent (C1 ) modes,
Lepton Family number (LF ) violating modes,
Lepton (L) or Baryon (B ) number violating modes

γγ
e+ e−
µ+ µ−
π0 e + e −
π 0 µ+ µ−
η e+ e−
η µ+ µ−
π+ π− e + e −
ρ0 e + e −
π + π − µ+ µ−
ρ0 µ+ µ−
ω e+ e−
ω µ+ µ−
K − K + e+ e−
φ e+ e−
K − K + µ+ µ−
φµ+ µ−
K 0 e+ e−
K 0 µ+ µ−
K − π+ e + e −
0 e+ e−
K∗
K − π + µ+ µ−
0 µ+ µ−
K∗
π + π − π 0 µ+ µ−
µ± e ∓
π 0 e ± µ∓
η e ± µ∓
π + π − e ± µ∓
ρ0 e ± µ∓
ω e ± µ∓
K − K + e ± µ∓
φ e ± µ∓
K 0 e ± µ∓
K − π + e ± µ∓
0 e ± µ∓
K∗

(892)
(892)

(892)

C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1
C1

C1
C1
C1
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF
LF

{
{

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

[yy ℄ <
[yy ℄ <
<

[yy ℄ <
<

[yy ℄ <
<

[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <
[gg ℄ <

2.2
7. 9
6. 2
4. 5
1. 8
1. 1
5. 3
3.73
1. 0
5. 5
2. 2
1. 8
8. 3
3.15
5. 2
3. 3
3. 1
1. 1
2. 6
3.85
4. 7
3.59
2. 4
8. 1
2.6
8.6
1.0
1.5
4.9
1.2
1.8
3.4
1.0
5.53
8.3

10−6
10−8
× 10−9
× 10−5
× 10−4
× 10−4
× 10−4
× 10−4
× 10−4
× 10−7
× 10−5
× 10−4
× 10−4
× 10−4
× 10−5
× 10−5
× 10−5
× 10−4
× 10−4
× 10−4
× 10−5
× 10−4
× 10−5
× 10−4
× 10−7
× 10−5
× 10−4
× 10−5
× 10−5
× 10−4
× 10−4
× 10−5
× 10−4
× 10−4
× 10−5

×

×

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

932
932
926
928
915
852
838
922
771
894
754
768
751
791
654
710
631
866
852
861
719
829
700
863
929
924
848
911
767
764
754
648
863
848
714

MesonSummaryTable
48

2π− 2e + + . .
2π− 2µ+ + . .
K − π− 2e + + .
K − π− 2µ+ + .
2K − 2e + + . .
2K − 2µ+ + . .
π − π − e + µ+ +
K − π− e + µ+ +
2K − e + µ+ + .

p e−
p e+

L
L
L
L
L
L
L
L
L
L ,B
L,B

.
.
. .
. .
.

< 1.12
< 2.9
< 2.06
< 3.9
< 1.52
< 9.4
< 7.9
< 2.18
< 5.7
[iii ℄ < 1.0
[jjj ℄ < 1.1

× 10−4
× 10−5
× 10−4
× 10−4
× 10−4
× 10−5
× 10−5
× 10−4
× 10−5
× 10−5

× 10−5

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

922
894
861
829
791
710
911
848
754
696
696

D ∗2 (2460)0 modes are harge onjugates of modes below.
D ∗2 (2460)0 DECAY MODES

Fra tion ( i / )

D + π−
D ∗ (2010)+ π−
D 0 π+ π−
D ∗0 π + π −

seen
seen
not seen
not seen

J P = 2+ assignment strongly favored.
Mass m = 2464.3 ± 1.6 MeV (S = 1.7)
m D ∗ (2460)± − m D ∗ (2460)0 = 2.4 ± 1.7 MeV

Mass m = 2006.96 ± 0.10 MeV
− m D 0 = 142.12 ± 0.07 MeV
Full width < 2.1 MeV, CL = 90%

2
Full width

m D ∗0

D 0 π0
D0 γ

Fra tion ( i / )
(61.9 ± 2.9) %
(38.1 ± 2.9) %

p (MeV/ )
43
137

I (J P ) = 21 (1− )
I, J, P need on rmation.

D ∗(2010)±

D ∗2 (2460)± DECAY MODES

D 0 π+
D + π0
D+ γ

(67.7 ± 0.5) %
(30.7 ± 0.5) %
( 1.6 ± 0.4) %

C

p (MeV/ )
39
38
136

I (J P ) = 21 (0+)

D ∗0(2400)0

Mass m = 2318 ± 29 MeV (S = 1.7)
Full width = 267 ± 40 MeV

D ∗0 (2400)0 DECAY MODES

D + π−

Fra tion ( i / )
seen

D1 (2420)0

p (MeV/ )
385

I (J P ) = 21 (1+)
I needs on rmation.

Mass m = 2421.4 ± 0.6 MeV (S = 1.2)
m D 0 − m D ∗+ = 411.1 ± 0.6 (S = 1.2)
1
Full width = 27.4 ± 2.5 MeV (S = 2.3)

D 1 (2420)0 modes are harge onjugates of modes below.
D1 (2420)0 DECAY MODES

D ∗ (2010)+ π−
D 0 π+ π−
D + π−
D ∗0 π + π −

D ∗2(2460)0

Fra tion ( i / )
seen
seen
not seen
not seen

I (J P ) = 21 (2+)

J P = 2+ assignment strongly favored.
Mass m = 2462.6 ± 0.6 MeV (S = 1.2)
m D ∗0 − m D + = 593.0 ± 0.6 MeV (S = 1.2)
2
m D ∗0 − m D ∗+ = 452.3 ± 0.6 MeV (S = 1.2)
2
Full width

= 49.0 ± 1.3 MeV (S = 1.5)

seen
seen
not seen
not seen

CHARMED, STRANGE MESONS
( =
= ± 1)
−
+
D s = s , D s = s, similarly for D ∗s 's

Full width = 83.4 ± 1.8 keV
D ∗ (2010)− modes are harge onjugates of the modes below.
Fra tion ( i / )

(S = 1.4)

Fra tion ( i / )

D 0 π+
D ∗0 π +
D + π+ π−
D ∗+ π + π −

Mass m = 2010.26 ± 0.07 MeV (S = 1.1)
m D ∗ (2010)+ − m D + = 140.66 ± 0.08 MeV
m D ∗ (2010)+ − m D 0 = 145.4257 ± 0.0017 MeV

D ∗ (2010)± DECAY MODES

2
= 37 ± 6 MeV

D ∗2 (2460)− modes are harge onjugates of modes below.

D ∗ (2007)0 modes are harge onjugates of modes below.
D ∗ (2007)0 DECAY MODES

507
391
463
326

I (J P ) = 21 (2+)

D ∗2(2460)±

I (J P ) = 21 (1− )
I, J, P need on rmation.

D ∗(2007)0

p (MeV/ )

p (MeV/ )
354
425
473
280

S

I (J P ) = 0(0− )

D ±s

Mass m = 1968.30 ± 0.11 MeV (S = 1.1)
− m D ± = 98.69 ± 0.05 MeV

mD±
s

Mean life τ = (500 ± 7) × 10−15 s (S = 1.3)
τ = 149.9 µm

CP-violating de ay-rate asymmetries
ACP (µ± ν ) = (5 ± 6)%
ACP (K ± K 0S ) = (0.08 ± 0.26)%
ACP (K + K − π± ) = (− 0.5 ± 0.9)%
ACP (K ± K 0S π0 ) = (− 2 ± 6)%
ACP (2K 0S π± ) = (3 ± 5)%
ACP (K + K − π± π0 ) = (0.0 ± 3.0)%
ACP (K ± K 0S π+ π− ) = (− 6 ± 5)%
ACP (K 0S K ∓ 2π± ) = (4.1 ± 2.8)%
ACP (π+ π− π± ) = (− 0.7 ± 3.1)%
ACP (π± η) = (1.1 ± 3.1)%
ACP (π± η′ ) = (− 2.2 ± 2.3)%
ACP (η π± π0 ) = (− 1 ± 4)%
ACP (η′ π± π0 ) = (0 ± 8)%
ACP (K ± π0 ) = (− 27 ± 24)%
ACP (K 0S π± ) = (1.2 ± 1.0)% (S = 1.3)
ACP (K ± π+ π− ) = (4 ± 5)%
ACP (K ± η) = (9 ± 15)%
ACP (K ± η′ (958)) = (6 ± 19)%
T-violating de ay-rate asymmetry
AT (K 0S K ± π+ π− ) = (− 14 ± 8) × 10−3 [rr ℄
+
D+
s → φℓ νℓ form fa tors
r2 = 0.84 ± 0.11 (S = 2.4)
rv = 1.80 ± 0.08

L / T = 0.72 ± 0.18

p (MeV/ )
512
395
461
324

49

Meson Summary Table
Unless otherwise noted, the bran hing fra tions for modes with a resonan e
in the nal state in lude all the de ay modes of the resonan e. D −
modes
s
are harge onjugates of the modes below.
D

+ DECAY MODES
s

S ale fa tor/
p
Con den e level (MeV/ )

Fra tion ( i / )

In lusive modes

e + semileptoni
[kkk ℄
π + anything
π − anything
π 0 anything
K − anything
K + anything
K 0S anything
η anything
[lll ℄
ω anything
′
η anything
[nnn℄
f0 (980) anything, f0 → π + π −
φ anything
K + K − anything
K 0S K + anything
K 0S K − anything
2K 0S anything
2K + anything
2K − anything

( 6.5 ± 0.4 ) %
(119.3 ± 1.4 ) %
( 43.2 ± 0.9 ) %
(123 ± 7 ) %
( 18.7 ± 0.5 ) %
( 28.9 ± 0.7 ) %
( 19.0 ± 1.1 ) %
( 29.9 ± 2.8 ) %
( 6.1 ± 1.4 ) %
( 11.7 ± 1.8 ) %
< 1.3
%
( 15.7 ± 1.0 ) %
( 15.8 ± 0.7 ) %
( 5.8 ± 0.5 ) %
( 1.9 ± 0.4 ) %
( 1.70 ± 0.32) %
< 2.6
× 10−3
< 6
× 10−4

CL=90%

CL=90%
CL=90%

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

Leptoni and semileptoni modes

e + νe
µ+ νµ
τ + ντ
K + K − e + νe
φ e + νe
η e + νe + η ′ (958) e + νe
η e + νe
η ′ (958) e + νe
ω e + νe
K 0 e + νe
K ∗ (892)0 e + νe
f0 (980) e + νe , f0 → π + π −

8.3
× 10−5
( 5.56 ± 0.25) × 10−3
( 5.54 ± 0.24) %
|
( 2.49 ± 0.14) %
( 3.66 ± 0.37) %
( 2.67 ± 0.29) %
( 9.9 ± 2.3 ) × 10−3
< 2.0
× 10−3
( 3.7 ± 1.0 ) × 10−3
( 1.8 ± 0.7 ) × 10−3
( 2.00 ± 0.32) × 10−3

<

[ooo ℄
[ooo ℄
[ooo ℄
[ooo ℄
[ppp ℄
[ooo ℄

CL=90%

S=1.1
CL=90%

984
981
182
851
720

{

908
751
829
921
782

{

Hadroni modes with a K K pair

K + K 0S
K+K0
K + K − π+
[ss ℄
φπ+
[ooo,qqq ℄
φπ+ , φ → K + K −
[qqq ℄
K + K ∗ (892)0 , K ∗0 →
K − π+
f0 (980) π + , f0 → K + K −
f0 (1370) π + , f0 → K + K −
f0 (1710) π + , f0 → K + K −
K + K ∗0 (1430)0 , K ∗0 →
K − π+
K + K 0S π 0
2K 0S π+
K 0 K 0 π+
K ∗ (892)+ K 0
[ooo ℄
K + K − π+ π0
φρ+

[ooo ℄

K 0S K − 2π +
K ∗ (892)+ K ∗ (892)0
[ooo ℄
K + K 0S π + π −
K + K − 2π + π −
φ 2π+ π −
[ooo ℄
K + K − ρ0 π + non-φ
φρ0 π + , φ → K + K −
φ a1 (1260)+ , φ →
0 +
K + K − , a+
1 → ρ π
K + K − 2π + π − nonresonant
2K 0S 2π+ π−

(
(
(
(
(
(

1.49 ± 0.06) %
2.95 ± 0.14) %
5.39 ± 0.21) %
4.5 ± 0.4 ) %
2.24 ± 0.10) %
2.58 ± 0.11) %

(
(
(
(

1.14 ± 0.31) %
7 ± 5 ) × 10−4
6.6 ± 2.9 ) × 10−4
1.8 ± 0.4 ) × 10−3

732

( 1.52 ± 0.22) %
( 7.7 ± 0.6 ) × 10−3
|
( 5.4 ± 1.2 ) %
( 6.3 ± 0.7 ) %
+1.9 ) %
( 8.4 −
2.3
( 1.66 ± 0.11) %
( 7.2 ± 2.6 ) %
( 1.03 ± 0.10) %
( 8.6 ± 1.5 ) × 10−3

805
802
802
683
748

( 1.21 ± 0.16) %
2.6
× 10−4
( 6.5 ± 1.3 ) × 10−3
( 7.4 ± 1.2 ) × 10−3

<

( 9
( 8

±7
±4

<

[rrr ℄

(
(
(
(
(

{

198
218

S=1.1

401

CL=90%

3.4
× 10−4
1.09 ± 0.05) %
2.0 ± 1.2 ) × 10−4
9.0 ± 0.5 ) × 10−3
1.09 ± 0.20) × 10−3
3.0 ± 1.9 ) × 10−4

744
417
744
673
640
249
181
†

) × 10−4
) × 10−4

Hadroni modes without K 's

π+ π0
2π + π −
ρ0 π +
π + (π + π − )S −wave
f2 (1270) π + , f2 → π + π −
ρ(1450)0 π + , ρ0 → π + π −

S=1.4

850
850
805
712
712
416

673
669
CL=90%
S=1.2

975
959
825
959
559
421

π + 2π 0
2π+ π− π0
η π+
ω π+
3π+ 2π−
2π+ π− 2π0
η ρ+
η π+ π0
ω π+ π0
3π+ 2π− π0
ω 2π + π −
η ′ (958) π +
3π+ 2π− 2π0
ω η π+
η ′ (958) ρ+
η ′ (958) π + π 0

[ooo ℄
[ooo ℄

[ooo ℄
[ooo ℄
[ooo ℄
[nnn,ooo ℄
[ooo ℄
[nnn,ooo ℄

( 6.5 ± 1.3 ) × 10−3
|
( 1.69 ± 0.10) %
( 2.4 ± 0.6 ) × 10−3
( 7.9 ± 0.8 ) × 10−3
|
( 8. 9 ± 0 . 8 ) %
( 9.2 ± 1.2 ) %
( 2 . 8 ± 0. 7 ) %
( 4. 9 ± 3. 2 ) %
( 1. 6 ± 0 . 5 ) %
( 3.94 ± 0.25) %
|
< 2.13
%
( 12.5 ± 2.2 ) %
( 5. 6 ± 0 . 8 ) %

S=1.2

CL=90%

Modes with one or three K 's

K + π0
K 0S π +
K+η
K+ω
K + η ′ (958)
K + π+ π−
K + ρ0
K + ρ(1450)0 , ρ0 → π + π −
K ∗ (892)0 π + , K ∗0 →
K + π−
K ∗ (1410)0 π + , K ∗0 →
K + π−
K ∗ (1430)0 π + , K ∗0 →
K + π−
K + π + π − nonresonant
K 0 π+ π0
K 0S 2π + π −
K + ω π0
K + ω π+ π−
K+ωη
2K + K −
φK+ , φ → K+ K−

( 6.3 ± 2.1 ) × 10−4
( 1.21 ± 0.06) × 10−3
[ooo ℄ ( 1.76 ± 0.35) × 10−3
[ooo ℄ < 2.4
× 10−3
[ooo ℄ ( 1.8 ± 0.6 ) × 10−3
( 6.5 ± 0.4 ) × 10−3
( 2.5 ± 0.4 ) × 10−3
( 6.9 ± 2.4 ) × 10−4
( 1.41 ± 0.24) × 10−3

CL=90%

960
935
902
822
899
902
724
885
802
856
766
743
803
654
465
720
917
916
835
741
646
900
745

{

775

( 1.23 ± 0.28) × 10−3

{

( 5.0 ± 3.5 ) × 10−4

{

( 1.04 ± 0.34) × 10−3
( 1.00 ± 0.18) %
( 3.0 ± 1.1 ) × 10−3
× 10−3
[ooo ℄ < 8.2
[ooo ℄ < 5.4
× 10−3
[ooo ℄ < 7.9
× 10−3
( 2.16 ± 0.21) × 10−4
( 8.8 ± 2.0 ) × 10−5

900
899
870
684
603
366
627

CL=90%
CL=90%
CL=90%

{

Doubly Cabibbo-suppressed modes

2K + π−

( 1.26 ± 0.13) × 10−4
( 5.9 ± 3.4 ) × 10−5

K + K ∗ (892)0 , K ∗0 →
K + π−

805

{

Baryon-antibaryon mode

( 1.3 ± 0.4 ) × 10−3

pn

295

C = 1 weak neutral urrent (C1 ) modes,
Lepton family number (LF), or
Lepton number (L) violating modes

π+ e + e −

[yy ℄ <

π + φ, φ → e + e −

[xx ℄

π + µ+ µ−
K + e+ e−
K + µ+ µ−
K ∗ (892)+ µ+ µ−
π + e + µ−
π + e − µ+
K + e + µ−
K + e − µ+
π − 2e +
π − 2µ+
π − e + µ+
K − 2e +
K − 2µ+
K − e + µ+
K ∗ (892)− 2µ+

[yy ℄ <
C1

<
<

C1

<

LF

<

LF

<

LF
LF

<
<

L

<

L

<
<

C1

L

L

<
<

L

<

L

<

L

D ∗±
s

1. 3
( 6

+8
−4

4. 1
3. 7
2. 1
1. 4
1. 2
2. 0
1. 4
9. 7
4. 1
1. 2
8. 4
5. 2
1. 3
6. 1
1. 4

× 10−5

CL=90%

979

) × 10−6
× 10−7
× 10−6
× 10−5
× 10−3
× 10−5
× 10−5
× 10−5
× 10−6
× 10−6
× 10−7
× 10−6
× 10−6
× 10−5
× 10−6
× 10−3

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

968
922
909
765
976
976
919
919
979
968
976
922
909
919
765

{

I (J P ) = 0(?? )
J P is natural, width and de ay modes onsistent with 1− .

Mass m = 2112.1 ± 0.4 MeV
m D ∗± − m D ± = 143.8 ± 0.4 MeV
s

Full width

s

< 1.9 MeV, CL = 90%

MesonSummaryTable
50

D ∗−
s modes are

harge onjugates of the modes below.

D s∗+ DECAY MODES

p (MeV/ )

Fra tion ( i / )

D+
s γ
0
D+
s π

(94.2 ± 0.7) %
( 5.8 ± 0.7) %

139
48

J P is natural, low mass onsistent with 0+ .
Mass m = 2317.7 ± 0.6 MeV (S = 1.1)
m D ∗ (2317)± − m D ± = 349.4 ± 0.6 MeV (S = 1.1)
s0
s
Full width

< 3.8 MeV, CL = 95%

D ∗s 0 (2317)− modes are
D ∗s 0 (2317)± DECAY MODES
0
D+
s π
D + π0 π0

harge onjugates of modes below.

p (MeV/ )

Fra tion ( i / )
seen
not seen

s

298
205

I (J P ) = 0(1+)

Ds 1 (2460)±

Ds 1 (2460)+ DECAY MODES
D ∗s + π0
D+
s γ+ −
D+
s π π
D ∗s + γ
D ∗s 0 (2317)+ γ

mass, mean life, CP violation, bran hing fra tions

• B0

S ale fa tor/
p
Con den e level (MeV/ )

(48 ± 11 ) %
(18 ± 4 ) %
( 4.3 ± 1.3) %
< 8
%
+ 5. 0 ) %
( 3.7 −
2.4

S=1.1
CL=90%

297
442
363
323
138

Ds 1 (2536)+ DECAY MODES
D ∗ (2010)+ K 0
(D ∗ (2010)+ K 0 )S−wave
D + π− K +
D ∗ (2007)0 K +
D+ K 0
D0 K +
D ∗s + γ
+ −
D+
s π π

mass

• B ∗2 (5747)0

mass

harge onjugates of the